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SUMMARY

Over the past few decades, nucleic acid-based methods have been
developed for the diagnosis of intestinal parasitic infections. Ad-
vantages of nucleic acid-based methods are numerous; typically,
these include increased sensitivity and specificity and simpler
standardization of diagnostic procedures. DNA samples can also
be stored and used for genetic characterization and molecular
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typing, providing a valuable tool for surveys and surveillance stud-
ies. A variety of technologies have been applied, and some specific
and general pitfalls and limitations have been identified. This re-
view provides an overview of the multitude of methods that have
been reported for the detection of intestinal parasites and offers
some guidance in applying these methods in the clinical labora-
tory and in epidemiological studies.

INTRODUCTION

Soon after the first publications on the in vitro amplification of
DNA by PCR (1, 2), it was predicted that this new technology

would lead to a breakthrough in molecular parasitology and in the
diagnosis of parasitic infections (3, 4). Until that time, specific
DNA probes had been used in basic research and also in diagnostic
applications despite being hampered by the limited sensitivity of
such direct hybridization assays without a preceding amplification
step. It was expected that this could be overcome by the specific
amplification of minute amounts of DNA using PCR. In 1995, a
large number of papers on DNA-based methods for the detection
and identification of a range of parasitic infections were reviewed
by J. B. Weiss (5). At that time, the use of PCR was still limited, and
most research had been limited to malaria, Leishmania, trypano-
some, and Toxoplasma parasites, all of which are tissue parasites.
Moreover, except for toxoplasmosis, the experience of using PCR
on DNA isolated directly from patient material was limited.

Over the last 10 to 15 years, many clinical microbiology labo-
ratories have been provided with facilities for performing molec-
ular diagnostics. Moreover, technical advances, especially the in-
troduction of real-time PCR, have overcome many drawbacks of
PCR from the early years, such as contamination risk from ampli-
fied products. It also became possible to combine more than one
target in a multiplex assay relatively simply. In addition, the im-
plementation of automated DNA/RNA isolation methods has
made it possible to use nucleic acid-based detection techniques in
a high-throughput format.

Molecular detection, differentiation, and genotyping methods
for a large number of parasites have been described and imple-
mented in both diagnostic and research settings. In this review, we
focus primarily on molecular diagnostics and the molecular epi-
demiology of intestinal parasites and parasites that reside else-
where in the body but whose DNA can be detected in fecal samples
(e.g., Schistosoma and Paragonimus).

TECHNIQUES

PCR

First described in 1985, PCR allows the in vitro amplification of a
specific DNA fragment in a cyclic process of denaturation, hybrid-
ization of primers, and elongation of the DNA strand using a
thermostable DNA polymerase (1, 2). In nested PCR, amplicons
from a PCR are used as the template in a second PCR using one
primer (“seminested” or “heminested”) or two primers different
from those used in the initial PCR and located within the sequence
amplified by the first primer set. Nested PCRs are used to increase
sensitivity and specificity but have been more or less abandoned in
diagnostic laboratories due to the risk of contamination by PCR
products. The amplification products in a conventional PCR are
usually visualized with ethidium bromide or alternative, less mu-
tagenic dyes after agarose gel electrophoresis. Specificity is based
on the expected size of the PCR product. Multiplex PCRs, com-

bining PCRs for different DNA targets, can be achieved by choos-
ing primers for each target in such a way that different-sized am-
plicons for each target are produced. Optimization of such
conventional multiplex PCRs is difficult, as the efficiency of the
PCR is correlated with the size of the amplicon, which can result in
preferential amplification of smaller products.

Reverse Transcriptase PCR

In reverse transcriptase PCR (RT-PCR), cDNA copies are made of
RNA, followed by normal PCR amplification of the desired target.

Real-Time PCR

In real-time PCR, the production of amplicons is measured in
“real time” during the amplification process (6). Numerous meth-
ods have been described, ranging from the use of nonspecific
staining of double-stranded DNA using intercalating dyes to the
use of fluorescence-labeled DNA probes (7). One of the most
commonly used probe-based chemistries is the use of hydrolysis
or TaqMan probes (Fig. 1A), in which the 5=-to-3= exonuclease
activity of Taq polymerase cleaves the hybridized probe during the
elongation phase of the amplification reaction. In this process, the
fluorescent molecule at the 5= end of the probe is separated from
the quencher molecule at the 3= end of the probe, resulting in a
fluorescent signal that can be measured after each amplification
cycle. Amplification can also be detected by using fluorescence
resonance energy transfer (FRET) probes (Fig. 1B), which com-
prise two adjacent hybridizing probes that are labeled at the 3= and
5= ends of the probe with a donor and an acceptor fluorescent
molecule, respectively. An additional melt curve analysis (see be-
low) can be used for the detection of point mutations in the probe
sites, which can provide additional differentiation of the sequence
detected. Another example of probe-based real-time PCR chem-
istry is scorpion probes (or primers), which are composed of a
primer region with a covalently linked probe and a self-comple-
mentary stem sequence with a 5= fluorophore and a 3= quencher
(Fig. 1C). In the amplification process, the loop sequence hybrid-
izes with the complementary internal target sequence, separating
the reporter from the quencher and allowing the reporter to fluo-
resce.

The amplification cycle at which the level of fluorescent signal
exceeds the background fluorescence (threshold cycle [CT] value)
is directly correlated with the initial amount of target DNA in the
sample, making quantification possible. The absence of a postam-
plification process reduces the risk of contamination, labor time,
and reagent costs. Separate measurement of probes with different
fluorophores emitting fluorescence at different wavelengths en-
ables the implementation of multiplex PCRs of similar-sized DNA
fragments with the same efficiency.

High-Resolution Melt Curve Analysis

In high-resolution melt curve (HRM) analysis, the decrease of
fluorescence of an intercalating dye is measured in the process of
the separation of double-stranded DNA by a gradual increase in
temperature. Differences in the melting temperature (Tm) of an
amplicon reflect differences in the nucleotide sequence.

PCR-Restriction Fragment Length Polymorphism

In PCR-restriction fragment length polymorphism (PCR-RFLP)
analysis, PCR products are digested with restriction enzymes to
produce different numbers and sizes of fragments depending on
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differences in the number and location of restriction sites in the
amplicon. Target genes and restriction enzymes are chosen in a
way that, for example, different species within a genus produce the
same-sized amplicon but reveal different banding patterns by gel
electrophoresis after digestion.

Random Amplified Polymorphic DNA

Random amplification of polymorphic DNA (RAPD) is performed
by using single primers with arbitrarily chosen short nucleotide se-
quences to amplify products from genomic DNA. After optimiza-
tion, genus-, species-, or strain-specific banding patterns represent-
ing different DNA regions throughout the whole genome can be
obtained. The use of these nonspecific primers requires DNA from a
pure isolate without contamination by DNA from other organisms,
which makes it impossible to use this method on genomic DNA iso-
lated from clinical samples. Specific DNA products of interest can be
isolated, sequenced, and used for the development of specific assays
targeting these products (8).

Amplification Fragment Length Polymorphism

The amplification fragment length polymorphism (AFLP) tech-
nique is based on selective amplification of restriction fragments
derived from digested genomic DNA. DNA is digested with re-
striction enzymes, and oligonucleotide adapters are ligated to the
restriction fragments. Thereafter, PCR is used for selective ampli-
fication of the restriction fragments, and the amplified fragments
are separated by gel or capillary electrophoresis. Similar to the case
for RAPD, genus-, species-, or strain-specific banding patterns
can be obtained provided that pure isolates are available.

Single-Strand Conformation Polymorphism

Single-strand conformation polymorphism (SSCP) is a mutation-
scanning method based on the differential migration in gel elec-
trophoresis of single-stranded DNA molecules of the same size but
with different conformations due to differences in the nucleotide
sequences.

FIG 1 Three examples of probe-based real-time PCR chemistry. (A) Hydrolysis or TaqMan probes; (B) fluorescence resonance energy transfer (FRET) probes;
(C) scorpion probes.
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Multiplex Ligation-Dependent Probe Amplification

Multiplex ligation-dependent probe amplification (MLPA) uses
two target-specific oligonucleotides (probes) for each target of
interest with a universal primer sequence on the 5= end of one
probe and a sequence of a known length assigned to the target of
interest (stuffer sequence) followed by a universal primer se-
quence on the 3= end of the second probe. The two hybridized
probes are joined together through ligation using a DNA ligase
enzyme. The resulting product can be amplified by using primers
targeting the universal primer sequences on both ends of the
product. The PCR products can be separated on the basis of the
different lengths of the unique stuffer sequences using gel or cap-
illary electrophoresis, enabling multiplex detection of a large
number of targets (9).

PCR-Reverse Line Blot Assay

In PCR-reverse line blot (RLB) analysis, biotin-labeled primers
are used to produce a biotin-labeled PCR product and probes that
are covalently bound to a membrane. The biotin-labeled PCR
product is hybridized to the probes on the membrane, and the
hybridization product is visualized on an X-ray film by a biotin-
streptavidin-peroxidase-mediated chemiluminescence reaction.

Loop-Mediated Isothermal Amplification

Loop-mediated isothermal amplification (LAMP) typically
uses four target-specific oligonucleotides to amplify DNA un-
der isothermal conditions (10). The amplified DNA product
can be detected by the naked eye as a white precipitate in the
reaction tube or under UV light after the addition of a fluores-
cent intercalating dye.

Multilocus Sequence Typing

For multilocus sequence typing (MLST), depending on the degree
of discrimination required, a number of housekeeping genes of an
isolate are amplified and sequenced on both strands. Each se-
quence variant within each gene is assigned to a distinct allele, and
the combination of alleles within an isolate defines its allelic pro-
file or sequence type (SQT).

Basic Local Alignment Search Tool

The Basic Local Alignment Search Tool (BLAST) is an online al-
gorithm that can be used to compare DNA sequences of interest
against several DNA sequence databases.

DNA ISOLATION

Without an appropriate nucleic acid isolation method, DNA am-
plification techniques will not be reliable. Basically, there are two
essential points that must be kept in mind. First, will the isolation
method used be able to release the nucleic acids from the parasitic
stage (e.g., cysts, spores, or eggs), which is to be expected in the
clinical sample? Second, will the nucleic acids that are isolated be
free of substances that may interfere with or inhibit the amplifica-
tion reaction? It is not hard to imagine that the latter is especially
important in the isolation of parasite DNA from a complex matrix
such as feces (11). Heating of the stool specimen and the addition
of absorbent substances such as polyvinyl polypyrrolidone during
the DNA isolation procedure or the addition of inhibition factor-
binding substances, such as bovine serum albumin (BSA), or in-
hibitor-resistant DNA polymerases in the PCR mixture can be
used to prevent inhibition of the amplification reaction (12–15).

However, it remains important to include an internal inhibition
control in each reaction mixture. For example, phocin herpesvirus
(PhHV) is frequently used and is added to each sample for the
isolation procedure, after which a PhHV-specific PCR within the
multiplex of the respective targets is performed (16). Because
the same amount of virus is added to each sample, it is expected
that the fluorescent signal of the PhHV-specific probe will cross
the threshold at the same amplification cycle for each sample (CT

value). If a higher or no CT value is found in a sample, it suggests
inhibition of the amplification reaction. In such cases, DNA iso-
lation and PCR should be repeated using a diluted sample. With
regard to the first aspect, it appears that the efficient release of
nucleic acids depends on a balanced combination of actions in the
DNA isolation procedure. For example, some papers mention
specifically that additional mechanical disruption is needed for
the efficient isolation of DNA from Trichuris eggs or Entamoeba
cysts, while others use a standard isolation protocol without men-
tion of additional rigorous steps to break down the egg shell or cyst
wall (15, 17–19). Another example is the negative effect of preserv-
ing feces in formalin or sodium acetate-acetic acid-formalin (SAF)
on the specific amplification of Entamoeba, Giardia, and Crypto-
sporidium DNAs; this effect increases with the duration of fixation
(20–23). Species-specific DNA extraction using magnetic beads
which capture oligonucleotides specific for Cryptosporidium and
Giardia improved (lowered) real-time PCR CT values by averages
of 10.7 and 9.7 cycles, respectively (24). Nowadays, more and
more commercially available DNA isolation kits and protocols for
automated DNA isolation systems are becoming available for
DNA isolation from feces (25–27). The efficiency of DNA isola-
tion for each target in the expected variety of clinical samples
should be verified when such systems are introduced.

ASSAY DEVELOPMENT AND VALIDATION

Extensive knowledge of genetic variation across species and gen-
era is paramount in efforts to tailor DNA-based assays to relevant
organisms. Alignments of target sequences from related and un-
related organisms are used to aid the design of organism-specific
detection assays, and a choice is made of a target sequence that is
specific for the organism of interest and does not show sequence
variation within the organism. For example, it is important to
know that Cryptosporidium assays based on the DnaJ-like se-
quence, which are quite commonly used in diagnostic settings,
will most likely detect C. hominis and C. parvum only, and as a
consequence, other rarer Cryptosporidium species will remain un-
detected. This can be overcome by using an assay based on the
small-subunit (SSU) rRNA gene, but it should be taken into ac-
count that the SSU rRNA gene is highly conserved among some
apicomplexan genera. Thus, other related species, such as Cy-
clospora and Cystoisospora, could be detected as well. Obviously, in
the design of genotype-specific detection assays, target sequences
that show genotype-specific variation within the organism are
used to design genotype-specific primers and probes (28).

Sequence data that are used for the design and evaluation of
diagnostic primers and probes using BLAST searches are limited
mainly to data available in GenBank (28). Moreover, as pointed
out by Stensvold et al. (28) and Burnet et al. (29), the nomencla-
ture in GenBank does not always follow the changing taxonomy,
and there are several falsely annotated sequences, so care should
be taken when designing primers and interpreting PCR results,
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whether in silico (i.e., using software to analyze and predict PCR
outcomes) or in clinical situations.

Such evaluations should not be performed only when a diag-
nostic assay is introduced but have to be maintained through con-
tinuous monitoring of the literature. While in silico evaluation of
primer/probe specificity and sensitivity is a key component in the
development, integration, and validation of diagnostic assays, ex-
tensive laboratory testing using panels of control DNA samples of
individual worms, cultured or purified organisms, and isolated
fecal genomic DNAs may further challenge the sensitivity and
specificity of any given assay. For instance, the SSU rRNA gene is
highly conserved among some apicomplexan genera, but the lack
of specificity is somewhat balanced by the fact that many of these
genera are parasites of nonhuman hosts (28).

PROTISTS

More than 15 protistan genera are known to parasitize the human
intestine. For some genera, only one species has been found in
humans, for instance, Balantidium, while humans are natural
hosts of several species of Entamoeba, for instance. Human intes-
tinal protists each belong to one of six biologically very different
groups: amoebozoans, metamonads, ciliates, apicomplexans, mi-
crosporidia, and stramenopiles. Microsporidia and the Apicom-
plexa are all obligate intracellular parasites and as such are directly
responsible for tissue damage that often leads to symptoms in the
infected host. Asymptomatic carriage is not uncommon for most
parasitic infections; however, treatment of even asymptomatic
carriers of, for instance, Entamoeba histolytica and Giardia is im-
portant to reduce transmission and episodes of recrudescence. In
this review, only species that have been positively linked to disease
are included. A positive link means that the parasite may cause
dysentery (e.g., Entamoeba histolytica and Balantidium coli)
and/or has been identified as a recurring cause of outbreaks of
diarrhea (e.g., Cryptosporidium, Cyclospora, and Giardia) or mul-
tiple sporadic cases of diarrhea, for instance, in immunocompro-
mised individuals (e.g., microsporidia and Cystoisospora belli).

In addition to these organisms, Blastocystis and Dientamoeba
fragilis have been included, although the pathogenicity of these
organisms is the subject of ongoing debate. However, without the
routine use of permanently stained fecal smears, these parasites
are notoriously difficult to detect, and the use of nucleic acid-
based techniques has largely facilitated both detection and differ-
entiation. Thanks to these techniques, we are starting to build a
picture of their epidemiology and clinical significance, which is
why we have chosen to include them.

AMOEBOZOA

Entamoeba

Entamoeba histolytica is the causative agent of amoebic dysentery
and is able to penetrate the gut wall and reach the liver, where it
can cause severe damage by lysing liver tissue (30). Worldwide, an
estimated 50 million people are infected with E. histolytica, and
40,000 people die annually from the consequences of this infec-
tion (31).

In 1997, the existence of E. histolytica and Entamoeba dispar as
two distinct but morphologically identical species was officially
acknowledged, with only the former causing disease and the latter
being regarded as a harmless intestinal commensal (30, 32). The
global epidemiology of E. histolytica and E. dispar has been re-

viewed quite extensively, showing large variations in the ratios
between E. histolytica and E. dispar in different regions (33, 34).
Studies of travelers and immigrants performed in laboratories sit-
uated in countries where these organisms are not endemic have
shown a 1:10 E. histolytica/E. dispar ratio (35–38). which is in
agreement with the assumed worldwide ratio (39).

In nondiarrheic stool samples, Entamoeba cysts may be identi-
fied by, e.g., microscopy of fecal concentrates. Several species of
Entamoeba (e.g., E. histolytica, E. dispar, E. moshkovskii, E. coli, E.
hartmanni, and E. polecki) are capable of establishing infection in
the human intestine, and these species can be separated in part
based on morphological analysis of cysts. Mature cysts from En-
tamoeba species infecting humans are mainly uni-, quadri-, or
octanucleated. E. histolytica produces quadrinucleated cysts,
which are generally morphologically indistinguishable from cysts
produced by some nonpathogenic species of Entamoeba. Demon-
stration of erythrocytes within trophozoites of E. histolytica (Fig.
2A) is diagnostic but requires the availability of highly specialized
personnel and access to freshly passed dysenteric stool samples or
the use of fecal fixatives for specimen submission (40). Stool an-
tigen assays appear to be specific and sensitive for the detection of
E. histolytica infections in areas of endemicity (41) but lack sensi-
tivity in settings where the disease is not endemic (42, 43).

Apart from E. histolytica and E. dispar, two additional species
producing quadrinucleated cysts, E. moshkovskii and E. bangla-
deshi, have been identified in humans. E. moshkovskii has been
detected frequently by using nested PCRs in mixed infections with
E. histolytica and/or E. dispar (Table 1). Although E. moshkovskii is
regarded mostly as nonpathogenic, it has been associated with
gastrointestinal complaints in some studies (44–47). Little is yet
known about the genetic presence of virulence factors or the ex-
pression thereof in comparison with E. histolytica. The biology,
diagnosis, epidemiology, and clinical aspects of infections with E.
moshkovskii were recently reviewed (48).

Recently, E. bangladeshi was identified in stool samples from
children in Bangladesh (49). A genus-specific primer pair (50) was
used to analyze fecal DNAs from Bangladeshi children with and
without diarrhea who were microscopy positive for quadrinucle-
ated cysts but PCR negative for E. histolytica, E. dispar, and E.
moshkovskii. Sequencing of PCR products produced evidence of a
novel species, named E. bangladeshi. The morphology of cysts and
trophozoite stages of E. bangladeshi appears similar to that of E.
histolytica (49, 51). Phylogenetic analysis of the relationship be-
tween E. bangladeshi and other Entamoeba parasites reveals that,
although distinct, E. bangladeshi clearly groups with the clade of
Entamoeba parasites infecting humans, which includes E. histo-
lytica, E. dispar, and E. moshkovskii; this “complex” moreover con-
tains two additional species that have not been found in humans
so far, namely, E. ecuadoriensis (sewage) and E. nuttalli (nonhu-
man primates [NHPs]) (52, 53). Of note, E. nuttalli differs from E.
histolytica by 2 to 3 bp precisely in the DNA sequence of the E.
histolytica detection probe of a widely used real-time PCR based
on SSU rRNA genes of E. histolytica and E. dispar (28). As a result,
DNA amplification will occur but will probably not be detected by
this assay. Whereas E. nuttalli appears to be virulent in nonhuman
primates, at present, it remains unclear whether E. nuttalli can
infect and cause disease in humans (53–57).

The genetic universe of Entamoeba is currently rapidly expand-
ing, which is due mainly to the recent application of sequencing of
PCR products amplified from DNA extracted directly from feces.
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This has resulted in the discovery of a large number of novel En-
tamoeba lineages and subtypes (STs) from human and nonhuman
hosts. To date, at least 29 distinct lineages have been identified (50,
58). The search for and ongoing discovery of such new lineages
warrant substantial additional sampling in order to identify the
clinical significance of each lineage and to enable further intrage-
neric analysis of Entamoeba.

The absence of morphologically apparent differences has made
it necessary to develop new diagnostic techniques both for diag-
nosis and for an understanding of the epidemiology of E. histo-
lytica infections. Laboratory techniques for the diagnosis of E.
histolytica infections have been reviewed in detail (59, 60). A range
of DNA targets, single- and multicopy genes, have been used in
single-round and nested conventional PCRs and real-time PCRs.
More recent assays (35, 61–64) using (multiplex) real-time PCR
or (pyro)sequencing have been based on the SSU rRNA gene,
which appears to be the best diagnostic target in terms of sensitiv-
ity and specificity compared to real-time PCR assays targeting
non-SSU rRNA genes (65). A method for the detection and dif-
ferentiation of five species of Entamoeba, including E. histolytica,
based on Luminex technology was recently developed (66). One of
the species targeted was Entamoeba coli, which exhibits remark-
able intraspecies variation, and currently, two subtypes are known
(ST1 and ST2) (50). Meanwhile, the probes used for detection of
E. coli by Santos et al. (66) were identical only to ST1 and might
not detect E. coli ST2, which is currently represented in GenBank
under accession numbers AF149914 and AB444953. While the
approach is appealing, the challenges and limitations of basing
diagnostics exclusively on detection probes are evident.

Genetic variation within E. histolytica in protein-coding genes,
noncoding genes, and short tandem-repeat (STR) loci was re-

viewed by Ali et al. (33). Although one study in Bangladesh has
shown a link between genotypes and symptoms, it appears that
most strains of E. histolytica have the ability to invade host tissue
and cause disease. While the overall genetic diversity of E. histo-
lytica based on single-nucleotide polymorphisms (SNPs) appears
to be low, there is substantial genetic variability in highly repetitive
DNA regions and across SNPs in some coding genes. A multilocus
sequence typing (MLST) system was recently developed based on
16 polymorphic loci identified by next-generation sequencing of
E. histolytica genomes and verified by Sanger sequencing (67). As
this system is based on SNPs in protein-coding genes potentially
involved in pathogenesis rather than on surrogate markers such as
tRNA STR patterns, this method may hold promise for further
clinical and epidemiological investigations. However, it remains
unclear whether the extensive genetic diversity seen among the
isolates analyzed reflects a high rate of evolution by recombination
or reassortment events that may drive any observed differences
between E. histolytica genotypes in samples isolated from the same
geographical area. Hence, although a couple of SNPs in the cy-
clin-2 locus appeared to be associated with disease, it is not yet
clear whether differences in SNPs are associated with differences
in clinical outcomes or geographical differences. In summary,
genotyping currently has very limited clinical significance and is
not used in a diagnostic setting but for epidemiology research
only.

PCRs for the detection and differentiation of E. histolytica and
E. dispar were probably some of the first parasite PCRs to be widely
introduced into routine diagnostic laboratories and are now typ-
ically used in situations where quadrinucleated cysts have been
found in stool samples for species identification, sometimes in
addition to serology testing. PCR technology also facilitates efforts

FIG 2 Trichrome staining of an Entamoeba histolytica trophozoite with ingested red blood cells (A), Dientamoeba fragilis trophozoites (C), and the Blastocystis
vacuolar stage (D). (B) Giemsa staining of Giardia lamblia trophozoites. (Parasite images courtesy of Marianne Lebbad; reprinted with permission.)
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toward identification of E. histolytica in samples other than stool,
e.g., aspirates from liver abscesses, cerebrospinal fluid (CSF), and
urine (51, 68–70). The wider availability of real-time PCR plat-
forms has paved the way for the routine use of PCRs for this and
other parasite targets as first-line diagnostic methods. Indeed, E.
histolytica-specific gene targets have been integrated into several
recent high-throughput multiplex assays aiming to detect a
steadily increasing number of enteropathogens (Table 2).

METAMONADS

Giardia

The genus Giardia comprises multiple species whose taxonomy is
in a state of flux. Giardia lamblia (synonyms, G. duodenalis and G.
intestinalis) (Fig. 2B) is one of the most common intestinal para-
sites of humans (71); in some cohorts, for instance, Cuban chil-

dren, the prevalence may exceed 50% (72). Transmission is by the
fecal-oral route, and the parasite has a simple life cycle comprising
excystation in the duodenum; colonization by rapidly multiply-
ing, noninvasive trophozoites on the mucosal surface of the small
intestine; and, eventually, the production of environmentally re-
sistant cysts that are shed with host feces. Food- and waterborne
outbreaks have frequently been reported (73). Symptoms may
include late-onset and persistent diarrhea (rather than acute diar-
rhea), abdominal cramps, bloating, steatorrhea, malabsorption,
weight loss, and stunting (74–76). Stools from symptomatic car-
riers may be mushy, greenish, and foul-smelling.

Persistent symptoms due to, or following, Giardia infection
take a significant toll on human health. Reappearance of symp-
toms, including abdominal symptoms and fatigue, can result from
reinfection, recrudescence, perturbation of the gut flora, or

TABLE 1 PCR-based studies that have included PCR detection of E. moshkovskii rDNAh

Country Method
No. of
patients

Sample selection
criterion

No. of
samples
tested

% positive samples

Reference(s)E. histolyticaa E. dispara E. moshkovskiia
E. moshkovskii
only

Bangladesh Nested PCR 109 109 16 36 21 6 427
Ghana PCR-RLB 246 20 0 45 0 428
India Nested PCR-RFLPc 746 Microscopy positive 68 19 97 25 1 429
Thailand Multiplex PCR Microscopy positive 30 13 20 0 0 430
Iran Nested PCRd 1,037 Microscopy positive 88 0 100 1 1 431
India Nested PCR-RFLPd 1,720 Microscopy positive/

culture positive
202 30 79 16 1 432

India Nested multiplex PCR 1,720 Microscopy positive/
culture positive

202 35 84 18 0 433

Turkey Nested PCR-RFLPd 100 Diarrhea cases 100 23c NA 2 NA 434
Australia Nested PCRd 1,246 MSM/microscopy

positive
54 5 65 31 15 44

Australia Nested PCRd 5,921 Microscopy positive 110 5 57 50 24 435, 436
Tunisia Nested PCRd Microscopy positive 27 0 89 7 0 437
India Nested multiplex PCRe Microscopy positive 202 35 85 18 NA 438
Tanzania Nested PCRd 136 HIV positive 136 4c 5 13 12 439

622 Controls 0 0 0 0
Thailand Multiplex real-time

(FRET) PCR
Microscopy positive 33 6 85 1 0 61

India Nested multiplex PCRe 246 Microscopy positive 49 12 29 8 NA 440
NAi PCR-pyrosequencing NA Microscopy positive/

E. histolytica-E.
dispar PCR
positive

102 17 86 0 0 64

Iran PCRf 3,825 Microscopy positive 58 3 93 5 2 441
Brazil PCR-sequencing Microscopy positive/

culture positive
29 14 66 3b 3b 63

Ecuador PCR-RLBg 674 Microscopy positive 101 0 8 0 0 442
Pakistan Nested multiplex PCRe 129 Diarrhea cases 129 9 19 19 NA 45

151 Controls 151 1 27 4 NA
Malaysia PCRf 500 500 6 17 3 1 46, 443–445
Malaysia Nested multiplex PCRf 426 426 9 4 1 1 446
a Including mixed infections.
b DNA isolated from culture.
c Antigen detection only.
d PCR primers are described in reference 427.
e PCR primers are described in reference 433.
f PCR primers are described in reference 430.
g PCR primers are described in reference 428.
h Abbreviations: RLB, reverse line blot; RFLP, restriction fragment length polymorphism; FRET, fluorescence resonance energy transfer; MSM, men who have sex with men; NA,
not available.
i Samples from the indicated study were from patients that were tested in Sweden, Denmark, and The Netherlands.
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postinfection syndromes (77). In developed countries, such se-
quelae may have a vast impact on quality of life; in developing
countries, particularly in children, they add yet another burden to
already disadvantaged populations (77).

Several conventional and real-time PCRs for the primary diag-
nosis of giardiasis that target the SSU ribosomal DNA (rDNA),
�-giardin, triosephosphate isomerase (TPI), and intergenic spacer
(IGS) regions have been reported (21, 78–81). Many targets are
being used for further genotyping directly on DNA from fecal
samples or from Giardia isolates. SSU rRNA, glutamate dehydro-
genase (GDH), TPI, �-giardin, IGS region, and elongation factor
1-alpha (EF1-alpha) gene amplification products are used for di-
rect sequencing or RFLP in post-PCR analysis (82–85). Recently,
novel sequence information was used to identify new assemblage
A- and B-specific loci. Two assemblage-specific PCRs based on
these loci showed an excellent performance when used on DNAs
extracted from feces (86, 87). The molecular epidemiology of Gi-
ardia and genotyping methods have recently been reviewed (88,
89). Genotypes of Giardia are traditionally named “assemblages,”
which are identified by analysis of single or multiple loci such as
SSU rDNA, �-giardin, TPI, and GDH; the SSU rRNA and GDH
genes appear to be the genes that are most easily amplified (84, 90).
Humans host mainly assemblage B, while assemblage A is less
common; both assemblages are shared with many other mammals
(91). Monis and coworkers have suggested using G. duodenalis for
assemblage A and renaming assemblage B Giardia enterica. As-
semblages C and D are found mainly in canids and have been
referred to as Giardia canis; assemblage E, found in livestock, has
been referred to as G. bovis; assemblage F, found in cats, has been
referred to as G. cati, and assemblage G, found in rodents, has been
referred to as G. simondi, but for assemblage H in marine verte-
brates, no species name has yet been proposed (88, 89, 92–95). The
zoonotic potential of both assemblages A and B is evident when
studied at the levels of assemblages and subassemblages and even
at each single locus. However, when genotypes are defined by us-
ing a multilocus sequence typing scheme, only 2 of 84 multilocus
genotypes (MLGs) of assemblage A and none (n � 99) of assem-
blage B appear to have zoonotic potential (88, 96, 97).

While molecular markers for assemblage A appear to produce
robust and easy-to-read sequences, the allelic heterozygosity
shown to exist at the single-cell level in assemblage B isolates and
sometimes further complicated by other coinfecting assemblage B
subgenotypes (91) makes precise identification impossible.
Therefore, development of alternative genotyping methods ap-
pears to be relevant.

Findings on the clinical significance of different assemblages
have been contradictory; assemblage B was recently shown to be
associated with flatulence in children, and assemblage B appears
to be more common in patients with suspected treatment failure
(98). Homan and Mank found that assemblage A isolates were
detected solely in patients with intermittent diarrhea, while as-
semblage B isolates were present in patients with persistent diar-
rhea (99). In Saudi children, a strong correlation between the
presence of assemblage B and symptoms was found, while assem-
blage A was found mainly in cases of asymptomatic giardiasis (85).
In contrast, a study in Australia found assemblage A to be associ-
ated with diarrhea, while assemblage B was found mainly in
asymptomatic children (100). In a study among Rwandan chil-
dren, assemblage A was associated with vomiting and abdominal
pain (101). There are also examples of studies where clinical dif-

ferences associated with the two assemblages were not identified
(102, 103).

As for other parasites, the introduction of PCR-based diagnos-
tic assays for Giardia took place about a decade ago. Until then,
state-of-the-art diagnosis included mainly microscopy of fecal
concentrates (cysts), permanent staining of fixed fecal smears
(trophozoites), and antigen detection by using enzyme-linked im-
munosorbent assays (ELISAs) or direct fluorescent-antibody
(DFA) tests typically integrated into an assay also enabling the
detection of Cryptosporidium. DNA amplification techniques
have excellent sensitivity and specificity compared with micros-
copy and antigen detection (27, 78, 79, 81, 101, 104–108). Giardia-
specific DNA detection (including all assemblages) is increasingly
being incorporated into multiplex assays, which are listed in Ta-
ble 2.

Dientamoeba fragilis

Dientamoeba fragilis (Fig. 2C) was first described in 1918 as an
amoeba of the intestinal tract of humans (109). Later, by means of
antigen and ultrastructural studies and analysis of rRNA, how-
ever, the organism was reclassified as a trichomonad flagellate
although lacking external flagella (110–112). Since its discovery,
the pathogenicity of this organism has remained controversial.
Although in recent years, several authors have reported the clinical
importance of D. fragilis as a cause of gastrointestinal symptoms
(113, 114), a consensus on its pathogenicity is lacking, mainly
because so many D. fragilis infections remain asymptomatic
(115–118). D. fragilis appears to be extremely common and may
have a cosmopolitan distribution, although there are large varia-
tions in prevalence. D. fragilis has been linked to intestinal symp-
toms, especially in children (119, 120). Some studies report a
higher prevalence in patients with intestinal symptoms than in
healthy individuals (121), while others report the reverse situation
(122). Dientamoeba infections are potentially chronic (123),
which is one of the reasons why dientamoebiasis has been specu-
lated to be a neglected differential diagnosis of irritable bowel
syndrome (IBS) (124). It was found that metronidazole was capa-
ble of eradicating D. fragilis in 60% of 25 positive patients fulfilling
the Rome III criteria for IBS; however, microbiological and clini-
cal cures were not associated, and the study did not support a
hypothesis of a simple association between D. fragilis and IBS.

The SSU rRNA gene of D. fragilis was amplified and completely
sequenced for the first time in 1996 (110). Phylogenetic analysis of
housekeeping genes such as the SSU rRNA, EF1-alpha, and actin
genes consistently reveals Histomonas, a potentially invasive par-
asite causing blackhead disease in birds, as the closest relative (110,
125). Possibly due to insurmountable methodological challenges,
such as obtaining sufficient amounts of DNA from axenic cul-
tures, genomic data from Dientamoeba are not yet available, and
this precludes studies aiming to predict the existence of virulence
factors and other effector proteins.

Although one recent paper describes the existence of a cyst stage
of D. fragilis (112), the apparent absence of a cyst stage has always
meant to date that microscopy of fecal concentrates was not ap-
plicable, and traditional parasitological detection of D. fragilis re-
lies on morphological detection of trophozoites by light micros-
copy of fixed and permanently stained fecal smears. The sensitivity
of a single examination is not high because the day-to-day varia-
tion of D. fragilis trophozoites in feces seems to be even more

Verweij and Stensvold

382 cmr.asm.org Clinical Microbiology Reviews

http://cmr.asm.org


irregular than that observed in other intestinal protozoan infec-
tions such as G. lamblia and E. histolytica (113, 126).

A number of PCRs have been developed for diagnosis of and
research into Dientamoeba (Table 3). Conventional PCRs have
been used mainly for confirmation of microscopy results and sub-
sequent characterization of the Dientamoeba ribosomal genes in
human fecal samples. A real-time PCR targeting 77 bp of the SSU
rRNA gene was the first molecular assay developed as a screening
tool, potentially replacing expensive and time-consuming parasi-
tological diagnosis (127). Interestingly, with a real-time PCR tar-
geting the 5.8S ribosomal gene, which also included an internal
process control, it was shown that no reduction in amplification

efficiency could be detected when comparing fresh material with
material that had been stored unpreserved at 4°C for 8 weeks
(128).

RFLP analysis has been used to distinguish between the two
genotypes currently known and which differ by 2% across the SSU
rRNA gene (129–131). Genotyping has also been performed by
analysis of SNPs detected by PCR and pyrosequencing (132). The
Bi/PA strain (GenBank accession no. U37461) is commonly ac-
knowledged as a representative of genotype 2. Although there are
still few studies of genotypes, genotype 1 appears to account for
the vast majority of cases (130, 131, 133). The value of sequencing
of the internal transcribed spacer (ITS) region for typing studies of

TABLE 3 Primer and probe sequences for PCR-based assays for detection and molecular characterization of Dientamoeba fragilisa

Target Method
Amplicon
size (bp) Primer or probe (sequence) Reference(s)

Detection
SSU rDNA PCR 887 DF400 (5=-TATCGGAGGTGGTAATGACC-3=) 130, 459, 460

DF1250 (5=-CATCTTCCTCCTGCTTAGACG-3=)
SSU rDNA Real-time (TaqMan)

PCR
77 DF3 (5=-GTTGAATACGTCCCTGCCCTTT-3=) 127, 138, 451,

460, 461DF4 (5=-TGATCCAATGATTTCACCGAGTCA-3=)
Probe (5=-FAM-CACACCGCCCGTCGCTCCTACCG-TAMRA-3=)

rDNA (5.8S) Real-time (TaqMan)
PCR

98 Df-124F (5=-CAACGGATGTCTTGGCTCTTTA-3=) 27, 128, 135,
162, 462Df-221R (5=-TGCATTCAAAGATCGAACTTATCAC-3=)

Df-172revT (5=-FAM-CAATTCTAGCCGCTTAT-MGB-3=)

Molecular characterization/
genotyping

SSU rDNA PCR-RFLP 887 DF400 (5=-TATCGGAGGTGGTAATGACC-3=) 130, 459, 460
DF1250 (5=-CATCTTCCTCCTGCTTAGACG-3=)

ITS1-5.8S-ITS2 PCR-sequencing �440 TFR1 (5=-TGCTTCAGTTCAGCGGGTCTTCC-3=) 133
TFR2 (5=-CGGTAGGTGAACCTGCCGTTGG-3=)

SSU rDNA PCR 1,700 TRD5 (5=-GATACTTGGTTGATCCTGCCAAGG-3=) 110, 129–131
TRD3 (5=-GATCCAACGGCAGGTTCACCTACC-3=)

SSU rDNA PCR-RFLP 662 DF1 (5=-CTCATAATCTACTTGGAACCAATT-3=) 85, 90, 131,
463DF4 (5=-CCCCGATTATTCTCTTTGATATT-3=)

SSU rDNA PCR-HRM 662 DF1 (5=-CTCATAATCTACTTGGAACCAATT-3=) 85
DF4 (5=-CCCCGATTATTCTCTTTGATATT-3=)

SSU rDNA Nested PCR-sequencing 366 DF1 (5=-CTCATAATCTACTTGGAACCAATT-3=) 90
DF4 (5=-CCCCGATTATTCTCTTTGATATT-3=)
DF322For (5=-GAGAAGGCGCCTGAGAGATA-3=)
DF687Rev (5=-TTCATACTGCGCTAAATCATT-3=)

ITS1-5.8S-ITS2 PCR-sequencing 500 ssu2 (5=-GGAATCCCTTGTAAATGCGT-3=) 134
lsu1 (5=-AGTTCAGCGGGTCTTCCTG-3=)

ITS1 PCR-sequencing �100 ssu2 (5=-GGAATCCCTTGTAAATGCGT-3=) 134
5.8s1 (5=-TGTGAGGAGCCAAGACATCC-3=)

ITS1 Nested PCR-sequencing 366 SSU2 (5=-GGAATCCCTTGTAAATGCGT-3=) 90
Df-ITSRev (5=-GCGGGTCTTCCTATATAAACAAGAACC-3=)
Df-ITSnesFor (5=-ATACGTCCCTGCCCTTTGTA-3=)
Df-ITSnesRev (5=-GCAATGTGCATTCAAAGATCGAAC-3=)

SSU rDNA PCR-pyrosequencing 129 D.FRAGILISpyroF (5=-CGGAGGTGGTAATGACCAGTTAT-3=) 132
D.FRAGILISpyroR (5=-[biotin-C6]-TTGCAGAGCTGGAATTACCG-3=)
D.FRAGILISpyroS (5=-TGGTAATGACCAGTTATAA-3=)

SSU rDNA PCR-sequencing 364 DFpn_1f (5=-GCCAAGGAAGCACACTATGG-3=) 136
DFpn_364r (5=-GTAAGTTTCGCGCCTGCT-3=)

Actin PCR-sequencing 134–840 DF ACTIN_3f (5=-CCACACATTCTACAACGAATTAC-3=) 136
DF_ACTIN_157f (5=-TTCTTTCACTTTACTCATCAGGTC-3=)
DF_ACTIN_291r (5=-GACCAGCAAGGTTGAGTCTC-3=)
DF_ACTIN_843r (5=-TGGACCAGCTTCATTGTATTC-3=)

EF-1� PCR-sequencing 99–836 DF_EF_1f (5=-CTCACTTTGGAAGTTCGAATC-3=) 136
DF_EF_265f (5=-TCAAAGGCTCGTTATGATGAAATC-3=)
DF_EF_364r (5=-GAAACCTGAGATTGGAACAAAC-3=)
DF_EF_836r (5=-CTGTGTGGCAATCGAAAAC-3=)

a Abbreviations: SSU, small subunit; ITS, internal transcribed spacer; EF-1�, elongation factor 1�; RFLP, restriction fragment length polymorphism; HRM, high-resolution melting;
TAMRA, 6-carboxytetramethylrhodamine; FAM, 6-carboxyfluorescein; MGB, minor groove binder.
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D. fragilis is limited due to intrastrain genetic heterogeneity (133).
A profiling method using the variability within ITS1 of D. fragilis
was developed by Bart et al. (134) as a means of extracting useful
data from sequenced ITS clones, but so far, little is known regard-
ing its applicability and epidemiological relevance.

Studies of other housekeeping genes, such as EF1-alpha and
actin, may prove useful in terms of obtaining a higher resolution
than can be obtained by studies of SSU rRNA genes alone, as
demonstrated for other metamonads (e.g., Giardia and Trichomo-
nas) (125). Given the high prevalence of the parasite (135) and the
recently discovered potential for zoonotic transmission (90),
high-resolution markers for distinguishing between strains are
warranted. However, a preliminary study of D. fragilis in 40 pa-
tients revealed that the EF1-alpha and actin genes appear to be
remarkably conserved among patient isolates (136), but the clin-
ical and epidemiological utility of multilocus sequencing of
housekeeping genes can be fully determined only after comparing
D. fragilis isolates from symptomatic cases to those from asymp-
tomatic carriers. The clinical significance of the two known geno-
types of D. fragilis needs further investigation. Is the rarer geno-
type more virulent than the other, and could this possibly
contribute to the differences in clinical perceptions regarding the
organism’s pathogenicity?

Until a few years ago, humans were the only known hosts of
Dientamoeba, but recently, the parasite was discovered in nonhu-
man primates (gorillas) and pigs as well (90, 137, 138). Unfortu-
nately, no comparisons were made between sequences obtained
from humans and those obtained from gorillas, while analysis of
Dientamoeba ribosomal sequences from pigs showed that these
sequences were identical to those of genotype 1 commonly found
in humans (90).

Microscopic examination of permanent stains of fixed fecal
smears is insensitive compared to nucleic acid-based techniques:
in a study comparing microscopy and real-time PCR, Bruijnest-
eijn van Coppenraet et al. showed D. fragilis prevalences of 17%
and 31%, respectively (27). Reported prevalence figures may re-
flect differences in diagnostic modalities as well as geographical
variation or age variation in study cohorts (135). Whether or not
routine detection of D. fragilis should be part of an overall parasi-
tological screen for patients suspected of having intestinal para-
sitic disease is a matter of contentious debate, mainly due to the
predicament that guidelines as to when to try and eradicate the
parasite are still to be defined. However, the fact that D. fragilis
detection can now be easily integrated into multiplex nucleic acid-
based detection techniques (Table 2) means that it is relatively
inexpensive and straightforward to implement D. fragilis PCR in a
routine diagnostic panel. First and foremost, this can provide ac-
curate data on possible differences in prevalence and infection
intensity between symptomatic and asymptomatic carriers, which
can also be exploited in randomized controlled treatment studies
for evaluation of treatment efficacy. Moreover, positive DNAs can
be stored and used for epidemiological analyses of the prevalence
and significance of the two genotypes.

APICOMPLEXA

Some apicomplexan parasites belonging to the suborder Eimeriorina
can complete their life cycles in the human intestinal tract and hence
can be found in human feces; these parasites include Cryptospo-
ridium (Cryptosporidiidae), Cyclospora (Eimeriidae), Cystoisos-
pora, and Sarcocystis (Sarcocystidae).

Cryptosporidium

Cryptosporidium has emerged as an important cause of diarrheal
illness worldwide, particularly in young children (�5 years old)
and immunocompromised patients (139). At least 6,000 Crypto-
sporidium-caused cases of gastroenteritis occur annually in the
United Kingdom, where Cryptosporidium is the most common
protozoan agent involved in acute gastroenteritis (140). Infections
in immunocompetent individuals are self-limiting but may last
for 1 to 2 weeks; asymptomatic shedding of oocysts may be com-
mon (141). Cryptosporidiosis may be chronic and particularly
debilitating in patients with T-cell immune deficiencies, with
complications such as sclerosing cholangitis and, rarely, biliary
cirrhosis and pancreatitis (140).

Transmission is by the fecal-oral route by accidental ingestion
of mature oocysts containing infectious sporozoites (140). As the
oocysts are immediately infectious, unlike those of Cyclospora,
infection may result from direct exposure to mammalian (includ-
ing human) feces, but food and water contaminated by oocysts
may also represent a significant vehicle of transmission. Food- and
waterborne outbreaks are not uncommon (142) but may be iden-
tified only by chance and after ruling out other causes (143).

While treatment options remain limited, nitazoxanide, which is
subject to availability and often requires a special license/approval,
may reduce the severity of symptoms, which may include watery
diarrhea, abdominal cramps, vomiting, mild fever, and loss of
appetite (144). Affected children in developing countries may suf-
fer from malnourishment, and in some nonindustrialized coun-
tries, cryptosporidiosis may be a significant cause of morbidity
and mortality (145, 146). The introduction of highly active anti-
retroviral treatment (HAART) for immune reconstruction has
dramatically reduced the incidence and severity of cryptosporidi-
osis in patients with HIV/AIDS (140).

In 2010, 6,605 laboratory-confirmed cases of cryptosporidiosis
were reported by 21 European Union/European Economic Area
countries; however, 4 countries reported zero cases, and 9 countries
failed to report (http://www.ecdc.europa.eu/en/publications
/Publications/Annual-Epidemiological-Report-2012.pdf). It is likely
that in countries where Cryptosporidium infections are not notifi-
able, diagnostic methods are far from standardized. Individual
national prevalence estimates can be difficult to obtain, and even
when they are available, they should be interpreted carefully due
to variability in diagnostic modalities. In other countries, surveil-
lance systems include sub- and genotyping of laboratory-con-
firmed cases, which is useful for epidemiological and outbreak
investigations (147).

The genus Cryptosporidium comprises over 20 established spe-
cies (Table 4), of which the morphologically indistinguishable
species C. parvum and C. hominis (previously C. parvum genotype
H or genotype 1) account for most human cases (for a list of loci
used to discriminate the two species, see reference 148). However,
geographical variation may be seen, and both immunocompro-
mised and immunocompetent individuals may be infected by un-
usual species and genotypes (149). Cryptosporidium meleagridis,
in particular, appears to be an emerging pathogen and was found
at a rate of 12% in a large study of Peruvian HIV-infected crypto-
sporidiosis patients (150). In some countries, around 10% of all
human cryptosporidiosis cases are due to species other than C.
parvum, C. hominis, and C. meleagridis (150, 151). C. parvum may
be seen more commonly in mixed infections in humans than C.
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hominis (152). Human infections due to C. canis, C. cuniculus, C.
felis, C. ubiquitum, and C. viatorum, as well as other species and
unusual genotypes, are also emerging (150, 153–155; M. Lebbad,
personal communication). It appears that these genotypes are
found more frequently in asymptomatic carriers than in patients
with symptoms, which suggests that some “unusual” genotypes
may be more common than thought (140). The risk of C. parvum
infections is higher during spring, while C. hominis infections
peak in late summer and autumn (140). In contrast to human
infection by C. parvum, infections due to C. hominis may result
not only in diarrhea but also in nausea, vomiting, malaise, and
nonintestinal sequelae (156).

Similar to many other types of intestinal parasitic disease,
symptoms due to cryptosporidiosis are nonpathognomonic, and
diagnosis should be confirmed by laboratory tests. Cryptospori-
diosis should be suspected in any patient with acute gastroenteri-
tis, particularly in young children and if symptoms are prolonged
(140). As a consequence, cryptosporidiosis should be a differential
diagnosis to other causes of gastroenteritis, including Giardia, Cy-

clospora, Cystoisospora, microsporidia, noro- and rotaviruses,
Campylobacter, Salmonella, Shigella, and enterohemorrhagic E.
coli, such as E. coli O157 (141). However, in many laboratories,
Cryptosporidium is not traditionally included in test panels for
gastroenteritis. Clinical samples appropriate for laboratory diag-
nosis of cryptosporidiosis were recently reviewed by Davies and
Chalmers (140) and include biopsy specimens (jejunal/gastric),
bile (obtained by endoscopic retrograde cholangiopancreatogra-
phy [ERCP]), sputum samples (if respiratory symptoms are pres-
ent), and antral washouts (in high-risk patients with unexplained
sinusitis), in addition to stool samples. Traditional diagnosis relies
on microscopy of modified acid-fast-stained fecal concentrates
(Fig. 3A) or auramine-phenol staining and/or antigen detection
by DFA or immunochromatographic assays.

The vast number of species reported to infect humans makes a
genus-specific PCR assay the most appropriate diagnostic ap-
proach in routine clinical laboratories. DNA samples can be
stored for later epidemiological analysis in research and surveil-
lance laboratories. The main targets for diagnostic PCRs typically

TABLE 4 Species and genotypes of Cryptosporidium found in humans, listed according to frequency of reportinga

Report frequency and
species or genotype Host reservoir(s)

GenBank accession no.

Complete SSU rDNA
sequence available
(�1.75 kbp)
(examples)

COWP sequence (�550 bp)
(examples) LIB13

DnaJ-like
protein
(HSP40) ITS2

Common
C. hominis Humans AF093489/L16997 GU904404, GU904390, GU904388,

GU904389, GQ983374,
GQ983372, DQ388389,
EU186155

AF190627 AF400132 AF093012

C. parvum Humans, ruminants AF093490, AF161856 DQ187314, DQ060433, DQ062120,
JX547011, GU904402,
GU904400, GU904398

B78618 AF400131 AF093008

C. meleagridis Birds, mammals
(including humans)

AF112574 EU310392, DQ116568, JX568159,
GU904403, AB471654,
AY166840, AF248742

NA AF400133 AF381169

Less common
C. canis Dog AF112576 AF266274 NA NA NA
C. cuniculus (previously

rabbit genotype)
Rabbit NA EU437411, GU327782, GU904391,

GU904394
NA NA NA

C. felis Cat AF112575 AF266263 NA NA AF093013
C. ubiquitum Various mammals AF442484 JX861404, JX861396, JX861405 NA NA NA
C. viatorum Humans NA JX984441 NA NA NA

Rare
C. andersoni Cattle AB089285, AY954885,

AF093496
DQ060431, AB089289, AB514043,

AB514044
NA NA NA

C. bovis Cattle EF514234 NA NA NA NA
C. fayeri Red kangaroo AF112570 AF266269 NA NA NA
C. muris Rodents AF093498 DQ060430, AB089287 NA NA AF381167
C. scrofarum Pig NA NA NA NA NA
C. suis Pig AF108861 AF266270 NA NA NA
C. tyzzeri (previously,

mouse genotype I)
Mouse AF112571 NA NA NA NA

Chipmunk genotype I Chipmunk, possibly other
sciuridae

NA JX984442 NA NA NA

Horse genotype Horse NA EU437416 NA NA NA
Monkey genotype Monkey AF112569 NA NA NA NA
Skunk genotype Skunk, possibly other

mustelids
NA NA NA NA NA

a Selected information on nucleotide sequences for ribosomal genes (SSU rRNA and ITS2), Cryptosporidium oocyst wall protein (COWP), LIB13, and DnaJ-like proteins (or heat
shock protein 40 [HSP40]) currently available in GenBank is also shown. LIB13 is a Cryptosporidium-specific gene with unknown function. Abbreviations: SSU, small subunit; ITS,
internal transcribed spacer; NA, not available.
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include the SSU rRNA gene, the Cryptosporidium oocyst wall pro-
tein (COWP) gene, or the DnaJ-like protein gene (157–159).
While partial SSU rRNA gene sequences are available for all spe-
cies of Cryptosporidium known to infect humans, surprisingly,
only a fraction of these species are currently represented by com-
plete SSU rDNA sequences in GenBank (Table 4). COWP se-
quences are readily available, but for some other loci, for instance,
the DnaJ-like protein used in widely used diagnostic assays (27,
79, 87, 104, 107, 158, 160–162), sequence data are not available for
most species other than C. parvum and C. hominis, and other
Cryptosporidium species may go undetected by this assay.

Because there is little genetic variation across Cryptosporidium
SSU rRNA genes, the design of primers/probes targeting the entire
genus is relatively straightforward, but there are limited targets for
designing species-specific primers/probes. Therefore, other loci
have been targeted, such as COWP and the LIB13 locus (a coding
region of unknown function) (Table 4), for the differentiation of
Cryptosporidium species. A few published assays include both ge-
nus- and species-specific primers, enabling not only sensitive
screening but also real-time identification of at least some species.
One such example is a PCR targeting 125 bp of the SSU rRNA gene
designed to amplify and partially differentiate Cryptosporidium
species pathogenic to humans (152). Scorpion probes were de-
signed to enable differentiation between C. parvum, C. meleagri-
dis, and other species. The assay had a detection limit of 500 to
5,000 oocysts/g feces and was validated against microscopy and
antigen detection; species identification by scorpion probes was
validated by using RFLP analysis of amplicons, using VspI diges-
tion specific for C. hominis. A generic TaqMan assay targeting the
SSU rRNA gene and additional TaqMan assays for subsequent

distinction between species infecting humans and those infecting
cattle were reported recently by Burnet et al. (29).

Some of the challenges associated with developing standard-
ized, “one-size-fits-all,” nucleic acid-based tests are exemplified in
an interesting paper by Hadfield et al., who introduced a PCR
assay based on two duplex reactions. One reaction targeted the
entire genus by amplification of the SSU rRNA gene coupled with
a reaction targeting the C. parvum-specific LIB13 locus (163). The
second reaction targeted the C. hominis-specific LIB13 locus and
also included an internal process control. Hence, the assay allowed
direct detection of C. hominis and C. parvum, and in the event of a
positive genus-specific (SSU rDNA) result in the absence of a pos-
itive result from either of the two LIB loci, the 300-bp-long SSU
rRNA gene product could be sequenced for identification of the
species present. It has been argued that SSU rDNA PCR is com-
promised in its ability to detect mixed species due to preferential
amplification of the predominant species in a sample (153, 163,
164). Therefore, the setup developed by Hadfield et al. does not
circumvent this potential problem, since this genus-specific PCR
is based on SSU rRNA gene amplification. Interestingly, detection
and differentiation of C. hominis, C. parvum, and C. meleagridis in
human fecal samples can be performed by using high-resolution
melting curve analysis of amplicons of the ITS2 region (165). Us-
ing this assay, C. hominis, C. parvum, and C. meleagridis were
detected in 97, 44, and 2 samples, respectively, of 143 Cryptospo-
ridium oocyst DNA samples originating from Australians with
clinical cryptosporidiosis, and the results were in agreement with
results previously obtained by single-strand conformation poly-
morphism analysis. Melting curve analyses in assays using inter-
calating dyes to distinguish between C. parvum and C. hominis

FIG 3 (A and D) Modified Ziehl-Neelsen acid-fast staining of Cryptosporidium parvum/C. hominis oocysts (A) and a Cystoisospora belli oocyst (D). (B and C)
Unstained wet mounts for UV fluorescence microscopy showing autofluorescence of Cyclospora cayetanensis oocysts (B) and a Cystoisospora belli oocyst (C).
(Parasite images courtesy of Marianne Lebbad; reprinted with permission.)
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were also reported by Tanriverdi et al. (166, 167). Fluorescence
resonance energy transfer (FRET) probes (Fig. 1B) have also been
used to distinguish between C. parvum and C. hominis (168), but
there are issues regarding diagnostic sensitivity and potentially
impaired performance in terms of species resolution in mixed
infections.

For phylogenetic analysis and molecular epidemiological and
outbreak investigations, PCR-RFLP or PCR-sequencing analysis
of various loci, including SSU rDNA, COWP, GP60, heat shock
protein 70 (HSP70), actin, thrombospondin-related adhesive
protein, and many other gene targets, has been useful (169, 170).
Although GP60 remains the locus most widely targeted, the ideal
combination of loci for molecular epidemiological purposes re-
mains to be identified (169, 171). Surprisingly, there are a number
of species and genotypes for which complete SSU rRNA gene se-
quences are not available (Table 4), including the recently de-
scribed species C. cuniculus and C. viatorum. This may be due to
the fact that phylogenetic analysis of Cryptosporidium isolates are
often carried out by using only partial SSU rRNA genes (despite
the fact that variation is seen across the entire gene) and some-
times in conjunction with phylogenetic analysis of, for example,
HSP70 and actin genes (172, 173).

PCR is slowly gaining a foothold in clinical microbiology labo-
ratories, and the main approach has been the application of ge-
neric primers/probes used alone or multiplexed in assays targeting
other relevant parasites; typically, these are used as a first-line
screening tool as an alternative to traditional diagnostics (Table
2). DNA-based diagnostics offer improved diagnostic sensitivity,
as shown by Morgan et al. in 1998 (12) and in a multitude of other
studies. One example is seen in a study by Amar et al., who found
that PCR resulted in a 22-fold increase in the detection of Crypto-
sporidium and Giardia versus conventional microscopy (174). An
increased detection rate was found by using a DnaJ-like gene-
based TaqMan assay (158) compared to commonly used commer-
cial kits such as Merifluor Cryptosporidium/Giardia (Meridian
Bioscience) and the ImmunCard STAT! Crypto/Giardia Rapid as-
say (Meridian Bioscience) (175). In a study by Stensvold and
Nielsen (162), the multiplex assay was remarkably more sensitive
than modified Ziehl-Neelsen staining of fecal concentrates,
strongly supporting the implementation of a molecular screening
platform for cryptosporidiosis in low-endemicity Denmark: 16/
889 samples were positive for Cryptosporidium by real-time PCR,
compared to none by modified Ziehl-Neelsen microscopy. Along
these lines, Chalmers et al. (176) recently showed that the sensi-
tivity of modified Ziehl-Neelsen microscopy was 75.4% compared
to the real-time PCR developed by Hadfield et al. (163). Con-
versely, comparably high sensitivities were reported for auramine-
phenol microscopy and commercial kits based on immunofluo-
rescence microscopy and enzyme immunoassays (176). The
validation study was carried out by using Cryptosporidium sam-
ples, 97% of which were either C. parvum or C. hominis, and
therefore, the diagnostic sensitivity reported there must be inter-
preted in this light.

Cyclospora

Species of Cyclospora are obligate intracellular apicomplexan par-
asites infecting primates and a number of nonprimate hosts, in-
cluding other mammals, reptiles, and arthropods. Cyclospora cay-
etanensis is the only species so far known to infect humans and is
presumably host specific. Oocysts are excreted in feces, and there-

after, it takes �1 week for oocysts to sporulate in the environment.
Infection is due to the ingestion of sporulated oocysts. Sporozoites
released from ingested oocysts can infect the duodenum and jeju-
num. Oocysts are highly resistant to disinfectants used in the food
industry (177).

Areas where cyclosporiasis is endemic include the Americas, the
Middle East, Southeast and South Asia, South Africa, and south-
ern Europe, but the parasite may even be seen in outbreaks in areas
where the disease is not endemic, mainly due to the distribution of
contaminated food produce such as raspberries, basil, lettuce,
sugar snap peas, or other vegetables (178–183) or outbreaks in
groups of individuals from areas where disease is not endemic who
travel to areas of endemicity (184–186) or as sporadic cases after
travel to areas of endemicity (186). Asymptomatic presentation is
not uncommon in areas where the disease is endemic (177), but
symptoms related to Cyclospora infection may include low-grade
fever, anorexia, nausea, diarrhea, and weight loss and may be seen
primarily in children and HIV/AIDS patients in areas of endemic-
ity (177).

Recently, a study on population-based active surveillance for
Cyclospora infection by the U.S. Foodborne Disease Active Sur-
veillance Network concluded that clinicians should include Cy-
clospora infection in the differential diagnosis of prolonged or re-
lapsing diarrheal illness and should explicitly request stool
examinations for this parasite (187).

Traditional diagnostic methods include mainly autofluores-
cence (Fig. 3B) or, perhaps more commonly, modified Ziehl-
Neelsen staining of fecal concentrates in which oocysts of Cy-
clospora (size, 8 to 10 	m) can be differentiated from those of
Cryptosporidium (4 to 6 	m) and Cystoisospora (25 to 30 	m) by
morphological characteristics.

PCR methods in various formats have been used for direct de-
tection (screening) and confirmation of microscopy results. While
the ITS region may offer higher resolution and therefore may be
better for molecular epidemiological purposes (188, 189), the SSU
rRNA gene has been the primary target for PCR-based diagnosis
of Cyclospora in human fecal samples (Table 5).

In 2003, the first TaqMan assays were reported (190, 191), en-
abling the incorporation of Cyclospora into multiplex screening
assays to detect and differentiate multiple genera and species of
apicomplexa and microsporidia, with the key driving forces being
dramatically increased sensitivity compared to that of microscopy
(191, 192) and the fact that these parasites are rarely encountered
in clinical samples in areas where the disease is not endemic. A
multiplex PCR method to detect Cyclospora, Cystoisospora, and
microsporidia in stool samples based on Luminex technology was
recently reported (193). While the probe and reverse primer ap-
pear to be genus specific, the forward primer might be species
specific for C. cayetanensis. The assay could possibly be modified
toward the development of a Cyclospora genus-specific PCR. It
appears relevant to combine diagnostics for intestinal sporozoa
(Cystoisospora, Cyclospora, Cryptosporidium, and microsporidia)
in multiplex PCR assays, as these parasites are often waterborne,
most can be found in outbreaks, and there may be significant
overlap in risk factors and symptoms caused by these parasites.

Unfortunately, little has been published on the use of nucleic
acid-based tests for the diagnosis of Cyclospora infections in a
clinical diagnostic setting. In a small study in Peru, nested PCR
detected 57.1% positive results in diarrheal cases (20/35) versus
only 18.9% positive results in controls (3/15), compared to only
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18.9% and 6.7% positive samples in cases and controls, respec-
tively, by microscopy (192). In Egypt, Cyclospora infections were
detected in 35 of 140 (25%) diarrheic children by using nested
PCR, compared to 17.8% and 22.2% with modified Kinyoun stain
and autofluorescence microscopy, respectively (194). In The
Netherlands, 100 stool specimens from returning travelers with
diarrhea were screened for the presence of C. cayetanensis by using
fluorescence microscopy and real-time PCR. C. cayetanensis was
found in five cases by PCR, one of which (20%) could be con-
firmed by microscopy only after examination of several additional
slides; C. cayetanensis was the most frequent parasitic cause of
diarrhea after G. lamblia (191).

Genotyping has been performed for the differentiation of Cy-
clospora species by using the ITS region and the SSU rRNA gene.
Very few other genes have been explored, and no sequence varia-
tion was found in the HSP70 genes of Cyclospora cayetanensis iso-
lates from Nepal, Mexico, and Peru (195).

Cystoisospora

The apicomplexan genus Cystoisospora (Sarcocystidae; formerly
Isospora) comprises species that infect humans, dogs, cats, and
other mammals (196, 197). While cystoisosporiasis may be com-
mon in nonhuman hosts, human infection by Cystoisospora ap-
pears to be relatively rare, and symptomatic infections are proba-
bly seen mostly in immunocompromised individuals, including
patients with HIV/AIDS or lymphoproliferative disorders, in

whom infections are often chronic and severe (198–201). Super-
infection of the small bowel during administration of systemic
corticosteroids for eosinophilic gastroenteritis has been docu-
mented (202).

Regions of endemicity include tropical Africa, Southeast Asia,
and Central and South America; in Western countries, human
infections may largely be imported from travel to or origins in
countries where the disease is endemic (203).

Infection is probably self-limiting in immunocompetent hosts.
Symptoms may include diarrhea, steatorrhea, abdominal pain,
fever, malaise, nausea, vomiting, weight loss, dehydration, and
cachexia (197). Bile duct infection may be seen, while dissemi-
nated disease is probably rare but has been reported for AIDS
patients. Recurrences are common, and the chronic nature of the
illness contributes to morbidity and mortality among these pa-
tients (204–206). Sulfamethoxazole-trimethoprim treatment pro-
vides a good clinical response and is the drug of choice (207).

Mature oocysts are infective and contain two sporocysts, each
containing four sporozoites. Sporozoites released into the small
bowel by ingested oocysts invade the intestinal epithelium, and
once intracellular, the parasites undergo schizogony with mero-
zoite, trophozoite, schizont, gametocyte, and oocyst formation
(196, 197). Tissue cysts (lamina propria) may be seen by endos-
copy in the absence of fecal shedding of oocysts; tissue cysts may
be unizoite (208, 209). Oocysts are oblong and characterized by a

TABLE 5 PCR-based assays for detection and molecular characterization of Cyclosporaf

Species Amplification method Detection method Target Sample type(s) Reference

Cyclospora, Eimeria Nested PCR Gel electrophoresis SSU rDNA Purified oocysts 464
Cyclospora, Eimeria Nested PCRa Gel electrophoresis SSU rDNA Stool 465
Cyclospora, Eimeria Nested PCR-RFLPa Gel electrophoresis SSU rDNA Raspberries 466
Cyclospora, Eimeria Nested PCRa Oligonucleotide ligation SSU rDNA Controls 467
Cyclospora, Eimeria Nested PCRa Sequencing SSU rDNA Stool 468
Cyclospora PCR Gel electrophoresis ITS1 188
Cyclospora Real-time PCR Hydrolysis probe SSU rDNA Controls 190
Cyclospora Real-time PCR Hydrolysis probe SSU rDNA Stool 191
Cyclospora, Eimeria Nested PCR-RFLP Gel electrophoresis SSU rDNA Water 469
C. cayetanensis, C. colobi, and Eimeria Multiplex nested PCRb Gel electrophoresis SSU rDNA Stool 470
Cyclospora, Eimeria Nested PCRa Gel electrophoresis SSU rDNA Sputum 471
Cyclospora, Eimeria Nested PCRa Gel electrophoresis SSU rDNA Stool 472
Cyclospora Real-time PCRe Hydrolysis probe SSU rDNA Stool 473
C. cayetanensis, C. colobi, and Eimeria Multiplex Nested PCRd Gel electrophoresis SSU rDNA Stool 194
Cyclospora, Eimeria Nested PCR-RFLPa Gel electrophoresis SSU rDNA Stool 192
C. cayetanensis PCR Gel electrophoresis ITS2 Spiked samples 474
Cyclospora PCRc Gel electrophoresis ITS1 Stool 189

Nested PCR Gel electrophoresis SSU rDNA Controls 450
Cyclospora, Cryptosporidium,

Toxoplasma, and Sarcocystis
Real-time PCR SYBR green MCA SSU rDNA Control samples 219

C. cayetanensis, C. colobi, and Eimeria Multiplex PCRd Luminex SSU rDNA Stool 193
C. cayetanensis, C. colobi, and Eimeria Multiplex nested PCRd Gel electrophoresis SSU rDNA Stool 184
Cyclospora Nested PCR Sequencing SSU rDNA Stool 475
Cyclospora Nested PCR Sequencing HSP70 Stool 195
C. cayetanensis, C. colobi, and Eimeria Nested PCRd Electrophoresis SSU rDNA Raspberry, basil, pesto 476
C. cayetanensis, C. cercopitheci Real-time PCR Hydrolysis probe SSU rDNA Raspberry, basil, pesto
C. cayetanensis Real-time PCR Hydrolysis probe HSP70 Raspberry, basil, pesto
a PCR primers are described in reference 464.
b First-round PCR primers are described in reference 464.
c PCR primers are described in reference 188.
d PCR primers are described in reference 470.
e PCR primers are described in reference 190.
f Abbreviations: SSU, small subunit; ITS, internal transcribed spacer; HSP, heat shock protein; RFLP, restriction fragment length polymorphism; MCA, melt curve analysis.
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thin, transparent shell surrounding the sporocysts and are usually
detected in the laboratory by Ziehl-Neelsen staining of fecal con-
centrates (Fig. 3D) or by phase-contrast or fluorescence micros-
copy of unstained wet mounts (Fig. 3C). Flotation techniques are
sometimes used.

There is some indication that oocyst morphology differs from
host to host (210). Very few molecular studies have been under-
taken to characterize Cystoisospora from humans and other ani-
mals, so host specificity and the level of genetic diversity are in-
completely known; however, Cystoisospora belli (formerly Isospora
belli) is the species that has been reported in humans.

While Murphy et al. diligently described how Cystoisospora can
be detected by using a broad-specificity primer approach (211),
such an approach is not feasible in general practice and on routine
screening platforms due to potential requirements such as cloning
and low cost-effectiveness. Reports of targeted PCR assays are
scarce but include an assay based on nested PCR (212). This
nested PCR used an outer primer pair, IsoFO (5=-GTGCCTCTT
CCTCTGGAAGG-3=) and IsoRO (5=-GCACTCCACCCAGTTA
AGTGC-3=), and an inner primer pair, IsoFI (5=-CGATGGATCA
TTCAAGTTTC-3=) and IsoRI (5=-ACCACGTACACACCCCTA
AG-3=), followed by probe hybridization (IsoOP [5=-GT{T/A}AT
GGCTTCGGCCGGCGATGGA-3=]). While this assay could
potentially be implemented in a TaqMan format, the primers have
not been validated on fecal DNA. A real-time PCR with internal
process control was described by ten Hove et al. (213). It uses
primers Ib-40F (5=-ATATTCCCTGCAGCATGTCTGTTT-3=)
and Ib-129R (5=-CCACACGCGTATTCCAGAGA-3=) and ampli-
fies an 89-bp fragment of the ITS2 region, which is detected by the
double-labeled probe Ib-81Taq (5=-FAM [6-carboxyfluorescein]-
CAAGTTCTGCTCACGCGCTTCTGG-BHQ1-3=). The assay
was shown to be specific for 147 bacterial, parasitic, and fecal
control DNA samples and detected C. belli-specific amplification
in 21 microscopy-positive stool samples. This assay may be spe-
cific for C. belli; at least the probe is located in a region where C.
ohioensis exhibits a vast degree of divergence, including an inser-
tion of 3 bases. C. ohioensis is one of several species of
Cystoisospora identified in synanthropic carnivores (214). How-
ever, for several species of Cystoisospora, no sequence data are
available for this particular region, so the specificity of the probe is
difficult to determine at present.

A multiplex PCR with 4 primer sets to amplify C. cayetanensis,
C. belli, Enterocytozoon bieneusi, and Encephalitozoon intestinalis
was developed, in which detection of amplicons occurs by specific
probes coupled to Luminex beads (193) (Table 2). For C. belli,
primers were based on C. belli 5.8S rRNA and ITS2 and amplify a
213-bp sequence. These primers may enable the detection of spe-
cies of Cystoisospora other than C. belli; currently, only data for C.
ohioensis are available in GenBank for this region, and only 1 to 2
mismatches are seen across the primers.

The SSU rRNA gene and ITS1 sequences are used to determine
the taxonomic status of Cystoisospora isolates (210, 214–216).

Sarcocystis

Humans may serve as both intermediate and definitive hosts of
Sarcocystis; only intestinal Sarcocystis infections are briefly dis-
cussed here. Although Sarcocystis may include distinct species
pathogenic to humans, very little is known regarding host speci-
ficity, taxonomy, and overall epidemiology (217). Considering the
fairly high prevalence in various cohorts across the globe, as re-

viewed by Fayer (217), it is surprising that reports on Sarcocystis
infections of humans are so scarce. While DNA-based confirma-
tion is still pending, it is possible that intestinal infection by Sar-
cocystis in humans may be caused by both Sarcocystis hominis and
Sarcocystis suihominis and acquired through the consumption of
tissue cysts in undercooked beef and pork, respectively (217).

Symptoms related to intestinal infection include nausea, loss of
appetite, vomiting, stomach ache, bloating, diarrhea, dyspnea,
and tachycardia; they appear only a few hours after ingestion of
tissue cysts and may last for about 36 h. The prepatent period is 5
to 12 days, and patency may last for at least 120 days. Importantly,
symptoms overlap those characteristic of acute gastroenteritis
(217).

Seminested PCR combined with RFLP analysis has been used to
detect and distinguish S. hominis, S. fusiformis, and S. cruzi-like
organisms (218). Sarcocystis cruzi was included in a real-time PCR
assay targeting various coccidia of animal health and zoonotic
importance, where organisms were detected and differentiated
based on melting curve analysis (219).

CILIATES

One genus of ciliates is known to be able to infect humans: Balan-
tidium.

Balantidium

Balantidium has a cosmopolitan distribution and is present gen-
erally wherever pigs are present (220). Both B. coli and B. suis
infections of pigs have been reported, but molecular studies still
remain to be performed to settle whether B. coli and B. suis are in
fact separate species. Recent data, however, suggest that B. coli has
low host specificity (221). A study from Denmark revealed a prev-
alence of 100% in some pig cohorts, but so far, cases of human
balantidiosis acquired in Denmark remain to be reported. It has
been suggested that Balantidium does not readily produce patent
infections in humans (220). While asymptomatic infections may
be common, dysentery and invasion of the colon have been re-
ported (220, 222). Bowel perforation caused by B. coli, leading to
severe peritonitis, was described in France (223). Extraintestinal
spread to the peritoneal cavity, genitourinary tract, and lungs has
been reported (224–227).

Transmission occurs by ingestion of cysts contaminating food
or drink. Risk factors include contact with pigs and pig excreta
(224, 228). In humans, B. coli is the species reported; the same
species is known to infect pigs. It is the only ciliate and the largest
protozoon known to infect humans, and while human infections
may be rare, Balantidium may be extremely common in other
hosts, including pigs, causing asymptomatic infections. In fact, a
number of ciliates are known to colonize ruminants, to which
hosts these parasites are often beneficial, assisting the host in food
digestion and carbohydrate metabolism (229).

DNA or cysts of Balantidium have been detected in fecal sam-
ples from diverse hosts such as humans and nonhuman primates,
pigs, ostriches, rats, guinea pigs, salamanders, frogs, and fish (230–
234) and even in nonfecal human specimens such as bronchoal-
veolar lavage (BAL) fluid (224–227).

Because the cysts measure 40 to 60 	m and trophozoites might
be as large as 200 	m and are easily overstained in iodine-stained
wet mounts, they may easily be missed when focusing on finding
protozoan cysts by routine microscopy.

So far, PCR has been used mainly to characterize Balantidium
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from various hosts, including humans (221, 232–234). Very few
Balantidium sequences are currently available in GenBank, and
most represent the SSU rDNA or ITS regions of B. coli. Diagnostic
PCRs remain to be reported.

Application of general, broad-specificity primers targeting non-
human eukaryotic SSU rDNA may be of significant utility in ef-
forts to cost-effectively screen for Balantidium in clinical samples
other than feces (e.g., biopsy specimens and BAL fluid, etc.).

MICROSPORIDIA

Microsporidia are obligate, intracellular, single-celled fungi that
infect a wide variety of vertebrate and invertebrate hosts, compris-
ing �160 genera representing over 1,500 species, at least 14 of
which are known to be able to infect humans. Intestinal microspo-
ridiosis in humans is due mainly to Enterocytozoon bieneusi and
Encephalitozoon species, mainly E. intestinalis and, probably to a
lesser extent, E. cuniculi and E. hellem (235–238). E. bieneusi is
generally the species associated most frequently with human in-
fections, although a recent study on Russian HIV-positive patients
found that E. intestinalis was much more common than E. bieneusi
in this particular cohort (239). In humans, opportunistic infec-
tions associated with persistent diarrhea and weight loss may be
seen, especially in individuals with HIV/AIDS and organ trans-
plant patients, while in immunocompetent individuals, symp-
tomatic, self-limiting infection may occur (240–245). In HIV-in-
fected patients, a CD4
 T-cell count of �100 cells per 	l appears
to be a significant risk factor for microsporidiosis (246–248), al-
though a study of HIV patients in Nigeria reported microsporidi-
osis associated with a CD4
 T-cell count of �200 cells per 	l
(249); in a study of Danish HIV patients with unexplained diar-
rhea, most of whom were treated with HAART and had CD4


T-cell counts of �100 cells/	l, no cases of microsporidiosis were
detected by PCR for Enterocytozoon and Encephalitozoon (160).
Infections due to Encephalitozoon may also cause rhinosinusitis,
keratoconjunctivitis, nephritis, hepatitis, and systemic infections.

Probably because of the increased attention to microsporidi-
osis during the AIDS epidemic and the improvement of diagnostic
techniques, microsporidiosis is now increasingly being diagnosed
in transplant patients, children, the elderly, and travelers (241).
Although reports of outbreaks of microsporidia are scarce, both
food- and waterborne outbreaks have been reported (250, 251).
Most infections in immunocompetent individuals are self-limit-
ing; in immunocompromised patients, primary treatment may
include chemotherapeutic intervention with the aim of restoring
immunocompetence, such as administration of granulocyte colo-
ny-stimulating factor in combination with the use of antibiotics
such as nitazoxanide, albendazole, or fumagillin (252, 253).

The traditional gold standard for the detection of microspo-
ridia relies on the demonstration of 1- to 2-	m spores by trans-
mission electron microscopy, but this is an insensitive method for
finding spores, since the specimen analyzed is relatively small.
Detection of microsporidia in stool samples often includes the
identification of spores in fecal smears by nonspecific histochem-
ical chemofluorescent agent stains or trichrome stain as well as
monoclonal antibody immunofluorescence assays (246, 254–
256). Even using these staining techniques, detection and identi-
fication of microsporidial spores are difficult, and expertise is re-
quired. PCR has been shown to be a valuable technique in the
diagnosis of these important opportunistic pathogens (238).
Moreover, as distinct treatment options are available for different

genera, identification to the genus and species levels is clinically
important (252).

Molecular diagnostic tests for the detection of microsporidia
have been reviewed extensively (238, 257, 258). PCR diagnosis for
E. bieneusi was developed as early as 1993 (259), and since then, a
variety of conventional PCRs for detection and species identifica-
tion have been described. Meanwhile, relatively few real-time PCR
methods have been reported (Table 6). A PCR followed by detec-
tion of E. bieneusi, E. cuniculi, E. hellem, and E. intestinalis
by microarray has been developed (260). The assay developed by
Taniuchi et al. included a multiplex PCR setup along with primers
and probes for Cyclospora and Cystoisospora (193). This appears to
be a relevant option for the detection of diarrheagenic parasites
that are difficult to detect by conventional methods, particularly
in susceptible individuals such as HIV/AIDS patients and recipi-
ents of organ transplants.

Based on the ITS nucleotide sequence of E. bieneusi recovered
from feces of infected humans and animals, E. bieneusi comprises
a perplexing array of genotypes, several of which have been found
in humans. New genotypes keep emerging, and thus, the number
of E. bieneusi genotypes today may be well over 100 (37, 249, 256,
261, 262). Some of these genotypes have been recognized as being
host specific, while others have been found to infect both humans
and other animals, supporting the likelihood of zoonotic trans-
mission (235). Interestingly, pigeons appear to constitute a reser-
voir for species of microsporidia seen in humans; however, little is
known about the potential overlap of genotypes between humans
and pigeons (263).

Genotype B was the only genotype identified in samples from
patients with HIV in Australia and was also the predominant ge-
notype in France and The Netherlands (37, 248, 264). In contrast,
a variety of genotypes were identified in HIV-infected individuals
in Portugal, Peru, Thailand, Niger, Nigeria, Vietnam, and Gabon
and in unselected individuals in Cameroon (247, 249, 265–267).
Genotype D was recently reported for two Spanish transplant pa-
tients (242); in two other studies of organ transplant recipients in
Europe, genotype C was the predominant genotype (37, 264). Ge-
notype C was also found to be responsible for a food-borne out-
break in Sweden (250).

E. cuniculi infection in humans is rarely reported, while birds,
canids, rabbits, and rodents may be common hosts (236, 268). At
least four genotypes are known (269), among which genotype II
has not been detected in humans to date to our knowledge.

While genetic variation in E. intestinalis remains to be de-
scribed, E. hellem comprises at least 3 genotypes with some intra-
genotypic variation (269–274). Interestingly, analysis of four E.
hellem isolates from humans revealed that the C-terminal regions
of the spore wall proteins EhSWP1a and EhSWP1b are polymor-
phic, which is of interest for epidemiological studies (275).

While microsporidia may not currently qualify as part of a
routine test panel for intestinal pathogens, PCR-based detection
appears to be relevant in cases of HIV-related diarrhea, diarrhea in
patients undergoing organ transplantation, and unexplained di-
arrhea in otherwise immunocompromised patients. Genotyping
has immediate relevance to outbreak investigations but has also
proven useful in surveillance studies of microsporidia in humans
and other animals to identify transmission patterns and other as-
pects of epidemiology. It appears that there is a plethora of geno-
types for E. bieneusi, and while ITS sequence analysis may prove
valuable for further exploration of the complex epidemiology of
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microsporidia, it may be relevant to identify alternatives to ITS
sequence analysis for a more clinically relevant strain identifica-
tion approach.

Of note, few diagnostic PCRs have been developed for species
that potentially may cause systemic infections, and validation
studies on DNA extracted from clinical samples other than stool,
such as urine and pulmonary samples, remain limited.

STRAMENOPILES

Stramenopiles encompass a range of very diverse organisms, most
of which are free-living. Blastocystis is remarkable in that it has
adapted to a strictly anaerobic parasitic life-style and is capable of
colonizing a vast variety of mammalian, avian, reptilian, amphib-
ian, and arthropod hosts. Only one other stramenopile is known
to be able to cause parasitic infections in humans, namely, Py-
thium, which is a rare cause of skin disorders and systemic gran-
ulomatous disease. Proteromonas lacertae, which is closely related
to Blastocystis, can be found in reptiles.

Blastocystis

Blastocystis (Fig. 2D) is a common, strictly anaerobic, unicellular
intestinal parasitic protist of humans and a wide variety of non-
human hosts (276–278). Despite the fact that it is one of the most
common microbial eukaryotes to colonize the human intestine
and its clinical significance is largely unknown, it remains a rela-
tively little-studied parasite. This may be due in part to a variety of
unrelated predicaments: the inconspicuousness of the parasite,
which makes diagnosis based on morphology difficult; the diffi-
culties associated with isolation in axenic culture; the resilience of

infections, which may be chronic and difficult to eradicate; and
the frequency with which the parasite presents itself along with
other intestinal microbial eukaryotes, such as Dientamoeba, mak-
ing it extremely difficult to know whether potential symptoms are
due to Blastocystis or another organism. It is not known how to
eradicate the parasite, and Blastocystis is not even remotely genet-
ically related to other microeukaryotes that colonize or infect the
human intestine, such as other protists and yeasts. Although all
the stages involved in the life cycle of Blastocystis have not been
fully clarified, transmission is by the fecal-oral route and possibly
mostly involves the accidental ingestion of the cyst stage (278).

While asymptomatic carriage is common, Blastocystis has been
linked to disease in a variety of case reports (279). The parasite
exhibits remarkable genetic diversity, and to date, nine genetically
distinct lineages, so-called subtypes (STs) (arguably species), have
been found in humans, of which ST1 to ST4 account for �90% of
human Blastocystis carriage (277). Efforts continue to identify po-
tential associations between subtypes and clinical outcomes of
colonization; so far, results are pointing in different directions.

Microscopy of fecal concentrates has low diagnostic sensitivity,
which has most likely led to substantial underreporting of the
parasite (280–282), whereas the use of permanently stained
smears of preserved stool specimens will increase the rate of de-
tection of Blastocystis (283). The use of molecular tools in Blasto-
cystis research and routine diagnostics has had a crucial impact on
our understanding of Blastocystis epidemiology and transmission.
The first report of a diagnostic PCR for Blastocystis, in 2006, was
partly inspired by the tendency toward screening of fecal DNAs for

TABLE 6 PCR-based assays for detection and molecular characterization of microsporidiaf

Species Amplification method Detection method(s) Target Sample type(s) Reference

E. intestinalis, E. cuniculi, E.
hellem

Real-time PCRe Hydrolysis probe SSU rDNA Controls 477

E. intestinalis, Encephalitozoon
species

Real-time PCR FRET probes and MCA SSU rDNA Stool (spiked) 478

E. intestinalis Real-time PCR Hydrolysis probe SSU rDNA Stool, blood, urine, tissue biopsy
specimens, and
bronchopulmonary
specimens

479

E. bieneusi Real-time PCR Hydrolysis probe SSU rDNA Stool 480
E. bieneusi, Encephalitozoon

species
PCR-hybridization Chemiluminescence SSU rDNA Stool, urine (spiked) 481

E. bieneusi Real-time PCR Hydrolysis probe SSU rDNA Stool 482
E. bieneusi, E. cuniculi, E.

hellem, and E. intestinalis
PCR Microarray SSU rDNA Stool 260

E. bieneusi, E. intestinalis Real-time PCRa,b Hydrolysis probe SSU rDNA Stool 266
E. bieneusi, E. intestinalis PCR Gel electrophoresis SSU rDNA Stool 483
E. bieneusi Multiplex real-time PCR Hydrolysis probe ITS Positive stool 457
Encephalitozoon species SSU rDNA 457
E. bieneusi PCR Sequencing SSU rDNA Positive stool 37
E. bieneusi, E. intestinalis Multiplex PCRc Luminex SSU rDNA Stool 193
E. bieneusi, Encephalitozoon

species
Real-time PCR SYBR green and MCA SSU rDNA Stool 484

E. bieneusi, E. intestinalis Real-time PCRb,d,e Hydrolysis probe SSU rDNA Stool 485
a E. bieneusi primers and probe are described in reference 482.
b E. intestinalis primers and probe are described in reference 479.
c E. intestinalis primers and probe are described in reference 457.
d E. bieneusi primers and probe are described in reference 480.
e Singleplex PCRs in parallel.
f Abbreviations: SSU, small subunit; ITS, internal transcribed spacer; HSP, heat shock protein; RFLP, restriction fragment length polymorphism; MCA, melt curve analysis; FRET,
fluorescent resonance energy transfer.
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common intestinal protozoa by PCR as a supplement to or even as
a substitute for microscopy of fecal concentrates (284). Primer
design was based on sequences available in the NCBI database at
that particular time. Analysis of newer data leads to the conclusion
that this PCR assay may exhibit preferential amplification of some
STs over others due to sequence variation in primer annealing
sites, which may impair its use in epidemiological studies. Indeed,
the extensive intrageneric diversity of Blastocystis has made the
design of a diagnostic genus-specific PCR applicable to fecal DNA
templates challenging.

Three diagnostic real-time PCR assays have been reported. A
real-time PCR based on an unknown Blastocystis gene using FRET
probes was validated against ST1, ST3, and ST4 (285). A SYBR
green real-time PCR was designed based on the SSU rRNA gene
for the detection of Blastocystis-specific DNA and subsequent sub-
typing by melting curve analysis (286). Low sensitivity can be ex-
pected due to the relatively large PCR product (320 to 342 bp,
depending on the subtype), and the specificity of the assay is only
95%. The third real-time assay, using a hydrolysis probe based on
the SSU rRNA gene, was characterized by 100% specificity (287).
The use of real-time PCR in large-scale surveys will assist in iden-
tifying whether the development of symptoms is related to infec-
tion intensity by simple analysis of threshold cycle (CT) values for
individual samples.

Xenic in vitro culture (XIVC) sensitivity ranged between 52 and
79% compared to these real-time PCR assays (286, 287). Previ-
ously, XIVC was found to have a sensitivity of 89% compared to
conventional PCR (280). Conventional PCR relies on visual eval-
uation of PCR results, and this PCR was based on primers that
amplify a relatively large PCR product (�550 to 585 bp), which
was suitable for sequencing and subtype identification but too
large to be relevant for diagnostic PCR, especially in situations
where fecal DNAs are of suboptimal purity. An estimate of the
number of rRNA gene copies in one Blastocystis cell is not avail-
able, although it may lie somewhere between 20 and 100 (287,
288).

Generally, two methods have been employed for the genetic
characterization (subtyping) of Blastocystis, namely, barcoding
(289) and sequence-tagged-site (STS) PCR (290). These two
methods were recently evaluated by Stensvold (291), who con-
cluded that barcoding is the method of choice, enabling the detec-
tion of novel subtypes and further scrutiny of genetic diversity,
including analysis of SSU rRNA alleles, since the barcode region
has been validated as a marker of overall genetic diversity of Blas-
tocystis (289, 292).

Barcode primers (RD5/BhRDr) amplify 600 bp of the 5= end of
the SSU rRNA gene, and phylogenetic analysis has demonstrated
that this region is a valid surrogate genetic marker for complete
SSU rRNA gene sequences and even for markers in the genome of
the mitochondrion-like organelle (289, 292). The drawbacks
compared to the STS method are that sequencing is needed and
that mixed-subtype colonization may be difficult to decipher. On
the other hand, barcoding enables a more subtle analysis, namely,
SSU rDNA allele analysis. A public database is available (http:
//pubmlst.org/blastocystis/), which includes a sequence deposi-
tory for barcode sequences and sequences obtained by multilocus
sequence typing (MLST) (see below). It also has a BLAST facility,
where individual or bulk fasta files can be uploaded and analyzed
for quick identification of subtype number, hence obviating the
need for phylogenetic analysis (292, 293). SSU rDNA allele anal-

ysis is a useful indicator of intrasubtype genetic variation (292),
and to date, �35 SSU rDNA alleles for ST3 have been identified,
whereas the numbers of SSU rDNA alleles for ST4 and some other
subtypes remain much more limited. However, some of the allelic
variation in databases is the result of cloning and sequencing of
individual genes from strains rather than sequences based on PCR
products produced from the whole genome; intragenomic SSU
rDNA polymorphism has been reported (288).

Subtyping has revealed significant differences in Blastocystis ep-
idemiology: ST4 appears to be common in Europe, while it is
generally rare in most other regions. ST6 and ST7 account for
about 20% of the cases in Africa, while only sporadic cases are seen
in other regions. Independent data from Denmark (294) and
Spain (295) show associations between ST4 and diarrhea, and ST4
is also common in United Kingdom patients suffering from IBS
(277). Geographical differences in the distribution of subtypes
may hamper attempts to identify subtypes specifically linked to
disease.

“Genotype” has been used by some authors interchangeably
with “subtype.” Presuming that Blastocystis subtypes are equiva-
lent to separate species, subtype allele analysis should be regarded
as the equivalent of genotyping in other organisms. At this level,
there is currently very little information on Blastocystis. However,
it is likely that the introduction of the SSU rDNA allele database at
PubMLST (http://pubmlst.org/blastocystis/) will greatly facilitate
studies of both subtypes and SSU rDNA alleles, enabling rapid
analysis of fasta files obtained by barcoding (289). Indeed, allele
analysis is likely to be an essential tool in future analyses of the
potential zoonotic transmission of Blastocystis.

MLST analysis of Blastocystis is currently based on analysis of
loci in the mitochondrion-like genome (292); mitochondrial
DNA (mtDNA) is especially useful in MLST analyses due to its
haploid structure, hence bypassing problems related to se-
quence heterozygosity, as seen, for example, in some Giardia
MLST loci (91). So far, MLST systems are available for ST3 and
ST4, and similar assays for ST1 and ST2 will follow. Analysis of 132
ST3 and ST4 isolates from humans and nonhuman primates re-
cently revealed dramatic differences in intrasubtype diversity. No
fewer than 58 sequence types (SQTs) were detected among 81 ST3
samples, while only 5 SQTs were found among 50 ST4 samples
belonging to the common genotype (215). ST4 samples obtained
from Denmark, England, and Nigeria shared the same SQT.

While MLST therefore appears to be a very useful tool for in-
vestigating patterns of transmission, at least for ST3, the informa-
tion obtained by the much simpler SSU rDNA allele analysis can
be an extremely cost-effective tool. A recent study of Blastocystis in
NHPs representing 30 genera showed that NHPs typically host the
same subtypes as humans, apart from the fact that ST4 is rare in
NHPs while ST5 and ST8 are rare in humans. However, despite
ST1 and ST3 being common, it was noted that many of the ST3
alleles found in NHPs are not found in humans, and the same
holds true for ST1 (296). A large overlap, however, appears to be
present for ST2 SSU rDNA alleles, but only MLST can confirm
whether or not NHP ST2 isolates are indeed identical to human
ST2 isolates.

Due to limited knowledge of the clinical significance of Blas-
tocystis, implementation of molecular diagnostics in the rou-
tine clinical setting may be considered premature. However,
since large-scale epidemiological studies of different cohorts
represent a simple pathway to knowledge in Blastocystis re-
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search, the use of DNA detection methods will most likely
prove pivotal in distinguishing between carriers and noncarri-
ers; barcoding can subsequently be used for subtyping and al-
lele identification with no particular a priori knowledge by us-
ing the sequence query facilities at the PubMLST website (http:
//pubmlst.org/blastocystis/) (277, 292, 293). In the event that
differences in the clinical outcomes of Blastocystis infections
reflect differences in subtypes or strains, nucleic acid-based
methods will most likely be implemented as first-line diagnos-
tics (for recent reviews and updates on Blastocystis research, see
references 276, 297, and 298).

SOIL-TRANSMITTED HELMINTHS

Eggs of Trichuris trichiura, Ascaris lumbricoides, Necator america-
nus, and Ancylostoma duodenale develop into infective eggs or
larvae when excreted onto soil, hence the collective name soil-
transmitted helminths (STHs) (Fig. 4). New infections are ac-
quired by ingestion of eggs or penetration of larvae through the
skin. With a global estimate that hundreds of millions of people
are infected, especially in developing countries, these infections
are the most common but also the most neglected infections
worldwide (299–302). Although Strongyloides stercoralis has a
similar infection route, it is usually mentioned only as an aside
under the STH heading and is therefore perhaps even more ne-
glected (303, 304), which is strange considering that, as a result of
autoinfection, this very chronic disease may suddenly derail, for
example, through the use of corticosteroids, leading to a fatal out-
come (305–307).

Diagnosis appears to be simple and quite straightforward com-
pared to the difficult microscopic diagnosis of protist infections.
However, in Kato-Katz slides, which are often used in epidemio-

logical studies, hookworm eggs will disappear if slides are not read
within 30 to 60 min. The diagnosis of S. stercoralis infection is
notoriously difficult due to the often very small numbers of larvae
in chronic infections; multiple stools have to be tested by using
Baermann and coproculture techniques to achieve adequate sen-
sitivity (308). Conventional and real-time PCRs for the detection
and quantification of soil-transmitted helminths have been devel-
oped but are still used mainly for epidemiological studies in areas
of endemicity (Table 7).

Trichuris trichiura

To date, only two papers have been published on the use of PCR
for the detection of T. trichiura-specific DNA with an intended
use as a first-line diagnostic tool. This might be due to difficul-
ties in the isolation of parasite DNA from the very robust Tri-
churis eggs (17, 161). The first PCR targeting the T. trichiura
SSU rRNA gene for detection and quantification of T. trichiura
infections was incorporated into a real-time PCR in a TaqMan
array card format that detected 19 enteropathogens (309). By
testing analytical performance using spiked stool samples, the
assay showed 100% sensitivity and specificity. Clinical samples
from Tanzania and Bangladesh with a variety of known patho-
gens detected by conventional assays showed T. trichiura-spe-
cific DNA amplification in 8 of 8 microscopy-positive samples,
and an additional infection was detected in 1 of 80 microscopy-
negative samples. In a recent paper, a T. trichiura-specific
singleplex real-time PCR designed from the ITS1 sequence was
performed as part of a screen of stool samples collected from
schoolchildren in rural Ecuador in parallel with seven addi-
tional singleplex PCRs for other intestinal parasitic infections
(18). PCR detected T. trichiura-specific DNA in 12 of 400 sam-

FIG 4 Wet mounts of a Trichuris trichiura egg (A), an Ascaris lumbricoides egg (B), a hookworm egg (C), and Strongyloides stercoralis larva (D). (Parasite images
courtesy of Marianne Lebbad; reprinted with permission.)
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ples, whereas direct wet mount slides identified 3 of 400 sam-
ples with T. trichiura eggs only. There was a significant corre-
lation between egg counts measured by the Kato-Katz method
and the T. trichiura-specific DNA load quantified by PCR.

Phylogenetic analysis of Trichuris SSU, ITS1, 5.8S, ITS2, and
mitochondrial genes derived from worms and eggs isolated
from different host species has been performed. Although T.
trichiura and T. suis cannot be differentiated by using morpho-
logical and biometric measurements, the ITS1 and ITS2 se-
quences of T. trichiura and T. suis isolated from nonhuman
primates and different porcine hosts revealed clear differences
between the two Trichuris species (310). Phylogenetic analysis
of the ITS1, ITS2, and SSU rDNA sequences from various Tri-
churis species showed that T. trichiura and T. suis are closely
related but genetically distinct species (310–312). A detailed

analysis of the complete mitochondrial genome also confirmed
that T. trichiura and T. suis are separate species (313). Sequence
analysis of the ITS2 region of Trichuris species collected from
pigs and from humans in the Kabale district of Uganda showed
that cross-infections of humans with T. suis occurs but that
cross-infections of pigs with T. trichiura were not found. The
genetic differentiation and the presence of the two species in
humans were confirmed by sequence analysis of a part of the
�-tubulin gene. In three cases, worms in humans showed both
the T. suis and T. trichiura ITS2 genotypes, suggesting the ex-
istence of heterozygous worms (314). Combining ITS1-5.8S-
ITS2 sequences from adult Trichuris sp. worms isolated from
baboons with GenBank records for Trichuris isolated from
other humans, other nonhuman primates, and pigs revealed
two distinct Trichuris genotypes separated from T. suis infect-

TABLE 7 PCR-based assays for detection and molecular characterization of intestinal nematodesh

Species Amplification method Detection method(s) Target(s)
Sample type(s)
(no. of samples) Reference

O. bifurcum Nested PCR Gel electrophoresis ITS2 Stool (119) 486
N. americanus, O. bifurcum Nested PCRa Gel electrophoresis ITS2 Stool (262) 13
A. duodenale, N. americanus Nested PCRb Gel electrophoresis ITS2 Stool (503) 487
Ancylostoma, N. americanus,

O. bifurcum
Multiplex real-time PCR Hydrolysis probe ITS2 Stool (339) 328

A. lumbricoides Nested PCR Gel electrophoresis
and sequencing

Cytb Coprolites (9) 488

A. lumbricoides Nested PCR Gel electrophoresis
and sequencing

ITS1, Cytb Stool (13) 318

S. stercoralis Real-time PCR Hydrolysis probe SSU rDNA Stool (370) 354
A. duodenale, N. americanus,

Trichostrongylus
Nested PCR Gel electrophoresis ITS1-5.8S-ITS2 Stool (203) 489

Trichuris vulpis, T. trichiura Nested PCR Gel electrophoresis SSU rDNA Human stool (80),
dog stool (79)

311

Ancylostoma, N. americanus,
A. lumbricoides, S.
stercoralis

Multiplex real-time PCRc,d Hydrolysis probe ITS2 (Ancylostoma, N. americanus),
ITS1 (A. lumbricoides), SSU
rDNA (S. stercoralis)

Stool (1,312) 319, 321,
333

Ancylostoma, N. americanus,
A. lumbricoides, S.
stercoralis

Multiplex real-time PCRe Hydrolysis probe ITS2 (Ancylostoma, N. americanus),
ITS1 (A. lumbricoides), SSU
rDNA (S. stercoralis)

Stool (78, 229) 161, 320

S. stercoralis Real-time PCR Hydrolysis probe 28S Spiked stool 353
S. stercoralis (and O.

viverrini)
Real-time multiplex PCR FRET probes-MCA SSU rDNA Stool 356

Ancylostoma, N. americanus,
A. lumbricoides, S.
stercoralis

Multiplex PCRe Luminex detection ITS2 (Ancylostoma, N. americanus),
ITS1 (A. lumbricoides), SSU
rDNA (S. stercoralis)

Stool (319) 322

Ancylostoma, N. americanus,
A. lumbricoides, S.
stercoralis, T. trichiura

Real-time PCRc,d Hydrolysis probe ITS2 (Ancylostoma, N. americanus),
ITS1 (A. lumbricoides, T.
trichiura), SSU rDNA
(S. stercoralis)

Stool (525) 18

T. trichiura, A. lumbricoides Real-time PCRf Hydrolysis probe SSU rDNA (T. trichiura), ITS1
(A. lumbricoides)

Stool 309

N. americanus Real-time PCR SYBR green ITS2 Stool (216) 332
A. duodenale, N. americanus Nested PCRg Gel Electrophoresis ITS2 Stool (634) 490
N. americanus, A duodenale,

A. ceylanicum, A.
caninum, A. braziliense

Real-time PCR SYBR green-HRM ITS2 Stool (634) 330

S. stercoralis Real-time PCRd Hydrolysis probe SSU rDNA Stool (160) 355
Ancylostoma, N. americanus Real-time PCRc Hydrolysis probe ITS2 Stool (195) 329
a O. bifurcum primers are described in reference 486.
b N. americanus PCR primers and probes are described in reference 13.
c A. duodenale and N. americanus PCR primers and probes are described in reference 328.
d S. stercoralis PCR primers and probe are described in reference 354.
e PCR primers and probes are described in reference 319.
f A. lumbricoides PCR primers are described in reference 319.
g PCR primers are described in reference 487.
h Abbreviations: SSU, small subunit; ITS, internal transcribed spacer; MCA, melt curve analysis; HRM, high-resolution melt curve analysis; Cytb, cytochrome b; FRET, fluorescent
resonance energy transfer.
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ing baboons and human patients from Cameroon (315). The
zoonotic potential of T. suis and different Trichuris genotypes
is yet not fully understood, and further studies on these sym-
patric Trichuris infections are needed.

Pyrosequencing assays have been developed for the detection
of single-nucleotide polymorphisms (SNPs) in the �-tubulin
gene that are associated with benzimidazole resistance. The
finding of a benzimidazole resistance-associated codon 200
TAC SNP in T. trichiura might explain the reported ineffective-
ness of benzimidazole anthelmintics against Trichuris (316). In
Guatemala, by using nested PCR and sequence analysis, nine T.
trichiura-positive fecal samples revealed the TTC codon in the
�-tubulin gene, which is associated with benzimidazole-sensi-
tive parasites (317).

Ascaris lumbricoides

Conventional PCR assays targeting the ITS1 region and the cyto-
chrome b gene using gel electrophoresis for the detection of the
PCR product were used to detect and genotype Ascaris DNA from
coprolites found in pre-Columbian South American archaeolog-
ical sites and in fecal samples from patients attending a health
center in Rio de Janeiro, Brazil (318). Another PCR for the detec-
tion of A. lumbricoides DNA designed from the ITS1 sequence
(319) was used in different platforms as part of panels or multiplex
assays for the simultaneous detection of several linked pathogens.
A multiplex real-time PCR using hydrolysis (TaqMan) probes
(18) for the detection and quantification of A. lumbricoides, N.
americanus, A. duodenale, and S. stercoralis with an internal con-
trol was validated against a large panel of control samples and was
used in Malaysia and Indonesia (161, 319–321). In two studies in
Malaysia, Ascaris was detected by PCR in 6/77 and 12/225 cases,
respectively, compared to detection in 3/77 and 7/225 cases by
microscopy. Microscopy-negative samples showed higher median
CT values (i.e., lower DNA loads) than did microscopy-positive
samples. In Indonesia, in a large placebo-controlled study on the
effect of albendazole treatment on malarial parasitemia and al-
lergy, Ascaris prevalence and DNA load measured by PCR showed
little decrease in the placebo group (n � 466), and although the
decline in the albendazole group (n � 423) was much greater,
there were still positive cases after treatment 6 times at 3-month
intervals. This ITS1-based Ascaris PCR was also validated for use
in a TaqMan array card for the simultaneous detection of 19 en-
teropathogens, including viruses, bacteria, protozoa, and hel-
minths (A. lumbricoides and T. trichiura) (309). The same primer-
and-probe design for the detection of A. lumbricoides DNA was
incorporated into a multiplex PCR for the detection of three in-
testinal protozoa and four helminths using probe-based detection
with Luminex beads (322). TaqMan probe chemistry with another
primer-and-probe design from the ITS1 sequence was used in a
study in which an Ascaris PCR was performed in parallel with
singleplex PCRs for seven additional parasitic targets (18). Com-
pared to microscopy, only a small number of additional cases were
detected by PCR (28/400 versus 22/400). The microscopy-positive
samples showed a much higher DNA load than did the PCR-pos-
itive/microscopy-negative samples. DNA loads showed an excel-
lent correlation with the egg counts measured by the Kato-Katz
method. In an additional group of 125 children who were tested
before and after anthelmintic treatment, all initial Ascaris PCR-
positive cases tested negative 21 days after treatment.

Whole-genome fingerprinting by amplified fragment length

polymorphism (AFLP) analysis, RFLP analysis, and sequencing of
the ITS1 and mitochondrial genes and microsatellites have been
used as genotyping methods to study the epidemiology and zoo-
notic potential of Ascaris. These studies have been reviewed from
different angles to elucidate the taxonomic status of A. lumbri-
coides and A. suum and their zoonotic potential (323–325). Several
studies using different markers showed zoonotic potential of As-
caris, as humans and pigs were found to share common haplo-
types. Although some researchers leave the taxonomic status
undefined, Leles et al. concluded that based on nematode cross-
infections between humans and pigs, the hybridization between A.
lumbricoides and A. suum, and the high levels of genetic similarity
between the complete mtDNA genomes, there is a single inter-
breeding population of Ascaris, and those authors recommended
synonymizing the two species with the name A. lumbricoides Lin-
naeus 1758 (326).

The codon 200 TAC SNP in the �-tubulin gene was not found
in any of the A. lumbricoides samples (n � 38) tested by using a
pyrosequencing assay for the detection of SNPs in this gene that
are associated with benzimidazole resistance (316). In Guatemala,
sequence analysis of the �-tubulin gene of microscopy-positive A.
lumbricoides samples showed the TCC codon that is associated
with benzimidazole-sensitive parasites in all samples (317).

Hookworm

As reviewed by Gasser et al., species-specific markers defined in
the ribosomal and mitochondrial genes were validated for species
identification of adult hookworms and were later employed in
epidemiological studies using conventional PCR for the detection
of species-specific hookworm DNA in fecal samples (327). Prim-
ers and probes designed from the ITS2 sequences of N. americanus
and A. duodenale showed high specificity (100%) and sensitivity
(98.5% to 100%) using a range of controls and field samples from
northern Ghana in a multiplex real-time PCR for the detection of
N. americanus, Ancylostoma, Oesophagostomum bifurcum, and an
inhibition control (328). Moreover, there was a good correlation
between egg counts and parasite-specific DNA load. In an area of
low N. americanus endemicity in southern Ghana, the detection
rate by PCR for a single fecal sample almost equaled that of Kato
examination of three fecal samples. Additionally, N. americanus
infections were detected in 8 of 31 microscopy-negative cases by
PCR using three consecutive fecal samples (329). The same prim-
er-and-probe design from the ITS2 sequence was used in multi-
plex TaqMan-based assays targeting different helminth infections,
in singleplex assays tested in parallel with other targets, and in a
multiplex PCR combined with probe-based detection with Lu-
minex beads (Table 7). Considerable numbers of additional N.
americanus and Ancylostoma cases were detected with a helminth
pentaplex real-time PCR targeting the ITS2 sequences of N. ameri-
canus and A. duodenale in microscopy-negative fecal samples in
two studies in Malaysia (161, 320). N. americanus DNA was de-
tected in 21/76 and 20/225 microscopy-negative samples, and An-
cylostoma DNA was detected in 11/76 and 14/225 samples. Be-
cause of the identity between ITS2 sequences of the different
Ancylostoma species, the exact identification of the Ancylostoma
species involved in these studies is as yet unclear. Real-time PCR
targeting the ITS2 sequence followed by HRM analysis enabled the
detection and differentiation of N. americanus, A. duodenale, A.
ceylanicum, and A. caninum (330). Moreover, this PCR assay was
more sensitive for the detection of N. americanus than was nested
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PCR for testing of 634 samples from Malaysia. In a study in Cam-
bodia, microscopy was compared with these N. americanus and
Ancylostoma PCRs in a singleplex format. Although hookworm-
specific amplification was detected in an additional 35 of 166 mi-
croscopy-negative fecal samples, both PCRs remained negative for
11 of 52 samples in which hookworm-like eggs were seen by mi-
croscopy. Moreover, there was no difference in the PCR CT values
(or DNA load) detected in microscopy-negative and microscopy-
positive samples (331). The possibility of a less optimal DNA iso-
lation procedure or the misidentification of hookworm-like eggs
(e.g., Trichostrongylus) can therefore not be excluded. A SYBR
green-based real-time PCR targeting the ITS2 sequence of N.
americanus detected one egg in 200 mg of fecal material and de-
tected N. americanus-specific DNA amplification in stool samples
from 49 of 261 subjects, compared to 30 cases detected by micros-
copy (332). PCR-based detection showed large reductions in the
percentage of N. americanus-positive subjects as well as in the
intensity, measured as N. americanus-specific DNA loads, in stool
samples following intensive albendazole treatment compared to
placebo in a study in Indonesia (333). Unexpectedly, PCR re-
vealed that A. duodenale and not N. americanus was the most
prevalent hookworm infection, and A. duodenale was shown to be
a key factor in severe anemia and iron deficiency in Malawian
children (334). Infections with moderate and high A. duodenale
DNA loads were positively associated with severe anemia, with
odds ratios (ORs) of 2.49 (95% confidence interval [CI], 1.16 to
5.33) and 9.04 (95% CI, 2.52 to 32.47), respectively. Iron defi-
ciency measured in bone marrow was positively associated with an
increasing A. duodenale DNA load (ORs of 3.63 [95% CI, 1.18 to
11.20], 16.98 [95% CI, 3.88 to 74.35], and 44.91 [95% CI, 5.23 to
385.77] for low, moderate, and high loads, respectively).

Genetic diversity within hookworm species investigated by
whole-genome fingerprinting methods such as random amplified
polymorphic DNA (RAPD) and AFLP analyses, different muta-
tion scanning methods (e.g., SSCP), and sequencing of selected
protein-coding mitochondrial genes was reviewed by Gasser et al.
(327, 335). Population substructuring was revealed within A. duo-
denale in China by using PCR-SSCP to detect genetic diversity in
the cox1 gene (336). Using adult worms from Africa, Asia, and
South America, multiple genetically distinct groups of N. ameri-
canus were shown by using AFLP (337), confirming previous find-
ings of ribosomal and mitochondrial genetic variation (327).

Single-nucleotide polymorphisms in the �-tubulin gene at
codons 167 and 200 have been associated with resistance to benz-
imidazole anthelmintics in several strongylid nematodes of live-
stock. A real-time PCR for the detection of these polymorphisms
in A. caninum, A. duodenale, and N. americanus was performed on
hookworm specimens from schoolchildren in Uganda for whom a
reduced response to treatment with mebendazole was ob-
served. However, polymorphisms in codons 167 and 200 of the
�-tubulin gene were not detected in any of these samples (338).
Amplification and sequencing primers for pyrosequencing
were designed to detect and identify benzimidazole resistance-
associated SNPs in the �-tubulin genes of N. americanus, A.
lumbricoides, and T. trichiura (339). Recently, new-generation se-
quencing and analysis of the N. americanus transcriptome re-
vealed 18 predicted drug targets, which did not have homologues
in the human host (340).

Strongyloides stercoralis

Strongyloides stercoralis is endemic to many tropical and subtrop-
ical regions; it is estimated that 30 million to 100 million people
worldwide are infected, with prevalence rates in some cohorts
being as high as 50% (299, 303, 341). S. stercoralis behaves differ-
ently than other intestinal nematodes; rhabditiform larvae are ex-
creted in the stool but can already develop into infective filariform
larvae in the gut and then penetrate the intestinal mucosa or peri-
anal skin, resulting in a prolonged cycle of autoinfection, which
can continue for many decades (342–344). Chronic strongyloidia-
sis may result in hyperinfection or systemic strongyloidiasis and is
often seen in immunocompromised hosts such as transplant pa-
tients, patients receiving chemotherapy, and patients treated with
corticosteroids (303, 305, 345–347).

Laboratory diagnosis is based mainly on serology and the detec-
tion of S. stercoralis larvae by microscopic examination of fecal
samples. Microscopy is labor-intensive and, especially in chronic
infections, the sensitivity is low due to the often very small number
of larvae, and even after formalin-ether concentration, the use of
the Baermann method, or coproculture, multiple samples have to
be examined to achieve ample sensitivity (348–352).

Recently, a S. stercoralis real-time PCR with primers and FRET
probes designed from the 28S gene was described and showed high
specificity and specificity using controls and spiked samples, but it
was not evaluated further on clinical samples (353). Another real-
time PCR with primers and a hydrolysis probe based on the SSU
rRNA gene sequence of S. stercoralis was 10 to 100 times more
sensitive than assays designed from cox1 and a S. stercoralis-spe-
cific sequence. The assay showed 100% specificity when used on a
large panel of DNAs from fecal samples and controls. When ap-
plied to stool samples (n � 212) from northern Ghana, the sensi-
tivity of the SSU rRNA PCR compared to the Baermann test or
coproculture was 86% or 91%, respectively. In samples with pos-
itive Baermann and coproculture results, PCR showed 100% sen-
sitivity, but lower sensitivity was achieved in samples with discrep-
ant results by the Baermann and culture methods (354). A lower
sensitivity of PCR for patients with lower larval counts was also
found in a study in Bangladesh using the same PCR method. A
positive PCR result was found in all Harada-Mori culture-positive
samples with high and moderate larval loads, whereas only 15% of
the samples with a low larval load were found to be positive by
PCR (355). The PCR design was evaluated in asymptomatic
schoolchildren in Cambodia (n � 218) and showed 88.9% sensi-
tivity and 92.7% specificity compared to the combination of the
Baermann method and Koga agar culture as the gold standard; a
lower sensitivity was found for samples with discrepant results by
conventional methods. Additional PCR-positive samples, how-
ever, were found in Baermann- and Koga agar-negative samples as
well (331). The SSU rDNA primer-and-probe set (354) has been
incorporated into multiplex assays on a variety of different plat-
forms (18, 309, 319, 320, 322) (Table 2). In two studies in Malay-
sia, S. stercoralis DNA was detected in 21/76 and 28/225 micros-
copy-negative samples (161, 320). The SSU rRNA gene was also
used as a target in a duplex real-time FRET PCR combined with
melting-curve analysis for the simultaneous detection of Opis-
thorchis viverrini and S. stercoralis (356) and showed 100% sensi-
tivity and specificity compared to the agar plate culture method,
detecting S. stercoralis in 32 of 66 stool samples and 30 controls
(356). A conventional PCR designed from the 5.8S rRNA gene
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amplified S. stercoralis-specific DNA in all 16 agar plate-positive
samples and in 5 of 30 microscopy-negative samples in a survey of
782 individuals in Iran (357).

An early study using a PCR-RFLP approach targeting the ITS
and a partial 23S rRNA gene using larval DNA revealed species-
specific amplicon sizes for S. stercoralis, S. fuelleborni, and S. ratti.
RFLP showed identical patterns for human isolates of S. stercoralis
from different parts of the world and differentiated these from a
dog isolate of S. stercoralis (358). Sequencing of the SSU rRNA
gene of larvae isolated from fecal material collected from orang-
utans and a human working with orangutans identified S. sterco-
ralis and S. fuelleborni. The ITS1 sequences of 17 S. fuelleborni
isolates showed high variability, falling into two clusters, without
differentiating the orangutan and human isolates (359).

Considering the rather laborious and time-consuming concen-
tration and stool culture methods that have to be applied on mul-
tiple fresh stool samples to achieve ample sensitivity in the diag-
nosis of S. stercoralis infections, which are relatively rare in the
Western clinical setting, molecular diagnostics appear to be a
worthwhile alternative screening method. In a study using stool
samples from returning travelers (n � 2,591), real-time S. sterco-
ralis SSU rDNA PCR detected 21 positive cases, compared to only
3 cases detected by using microscopy of Baermann sediments
(107). The higher sensitivity of the PCR could be explained by the
detection of DNA from larvae that died before arrival of the sam-
ples by regular mail, whereas Baermann tests or coprocultures are
dependent on the presence of live larvae. In a small study in Ar-
gentina, using 17 positive stool samples from strongyloidiasis pa-
tients that were confirmed by agar plate culture of the first, second,
or third additional sample collected at 1-week intervals, a PCR
using the same primers and a PCR with a novel primer set de-
signed from the SSU rRNA gene performed on the first sample
showed positive results in all 17 cases (360).

FOOD-BORNE TREMATODES

Food-borne trematode infections are zoonotic infections and are
caused by �80 different trematode species (361). The species con-
sidered of public health importance are the liver flukes Clonorchis
sinensis, Opisthorchis spp., and Fasciola spp.; the lung flukes Para-
gonimus spp.; and a number of intestinal flukes. The small liver
flukes C. sinensis, O. viverrini, and O. felineus are endemic to East
and Southeast Asia and central northern Eurasia, and western
Eurasia (362). Increasing inland fish production causes a local
increase in the number of food-borne trematode infections, and
increasing international travel, human migration, food trade, and
changing eating habits may cause an increase in the number of
cases diagnosed in countries where the disease is not endemic
(363–365). Infections with liver and lung flukes are rarely fatal,
but the burden of disease is considerable, and moreover, C. sinen-
sis and O. viverrini infections may lead to cholangiocarcinoma
(366, 367). Although Fasciola spp., Paragonimus spp., and intesti-
nal flukes are found worldwide, higher rates of transmission are
known for certain areas, such as the Andean region, Africa, and
Asia (366).

Detection and differential diagnosis based on microscopic de-
tection of eggs in feces and sputum (only for lung flukes) are
notoriously difficult because eggs of different species resemble
each other and are often present in very small numbers (362, 366).
DNA-based methods for the detection and differentiation of
food-borne trematodes have been used, including PCR, nested

PCR, real-time PCR, and LAMP, designed based on the O. viver-
rini-specific repetitive DNA fragment, mitochondrial DNA, ITS1,
ITS2, and the SSU rRNA gene (Table 8). A real-time PCR with
primers and a hydrolysis probe based on the O. viverrini-specific
repetitive DNA fragment showed positive results in liver tissue
samples from Thai patients with hepatocellular carcinoma and
cholangiocarcinoma. O. viverrini-specific DNA was not detected
in 7 control liver specimens from nonprimary liver cancers (368).
The ITS2 sequence of C. sinensis was used to develop a TaqMan
real-time PCR to detect C. sinensis-specific DNA in fecal samples.
Beside cross-reacting with O. felineus, the assay showed high spec-
ificity and 100% sensitivity using samples (n � 74) with �100 eggs
per gram of feces (epg) and 91.4% sensitivity using samples (n �
70) with �100 epg. Three additional positive samples were de-
tected out of 26 samples in which no eggs were found by micros-
copy. The CT values were strongly correlated with the intensity of
infections, as determined by egg counts in Kato-Katz smears
(369). A similar approach with primers and a hydrolysis probe
designed from the C. sinensis ITS1 sequence showed specific (with
the exception of O. viverrini) and sensitive detection of C. sinensis
in a small number of fecal samples and fish tissue samples (370). A
multiplex real-time PCR based on the 2 DNA sequences of C.
sinensis and O. viverrini was developed by using FRET probes and
melting curve analysis. C. sinensis-specific DNA and O. viverrini-
specific DNA were amplified and detected in 8 and 30 C. sinensis-
and O. viverrini-positive stool samples, respectively. Surprisingly,
no correlation was found between the CT values and the intensity
of infection determined by C. sinensis and O. viverrini egg counts
in stool samples (371). An interesting approach, using MLPA, was
used for the identification of C. sinensis, O. viverrini, and O. fe-
lineus and differentiation from other closely related species with
three probe pairs derived from the ITS1 sequence. The assay was
validated by testing DNA samples from adult C. sinensis flukes and
fecal samples from C. sinensis-infected rats (372). The perfor-
mance of this technique has not yet been validated on clinical
samples from areas where C. sinensis, O. viverrini, and O. felineus
are endemic.

Primer sets for the detection of O. viverrini DNA in stool sam-
ples using LAMP were designed from the mitochondrial nad1 se-
quence and from the ribosomal ITS1 sequence of O. viverrini (373,
374). The ITS1-based LAMP assay showed a 100% sensitivity
compared to microscopy when tested on stool samples (n � 50)
from schoolchildren from an area of endemicity in Thailand,
compared to a remarkably low sensitivity of only 24% using con-
ventional PCR on the same target (373).

The phylogenetic relationship between C. sinensis and Opis-
thorchis is not yet clear. There are only small differences between
C. sinensis and Opisthorchis across the SSU rDNA, ITS2, and 28S
sequences. Based on the ITS1 sequence, O. viverrini and O. felineus
group together and are closely related to C. sinensis, whereas anal-
ysis of ITS2 and cox1 sequences suggests that O. felineus is more
closely related to C. sinensis than to O. viverrini. In contrast, the
ninth intron of the paramyosin gene (Pm-int9), which is more
variable than nuclear markers, showed a closer relationship be-
tween O. viverrini and C. sinensis (375, 376). Microsatellite DNA
analysis of O. viverrini in Thailand using 12 microsatellite loci
revealed the existence of genetic diversity and population sub-
structuring in O. viverrini, which can be a useful tool to study
transmission dynamics and control (377, 378).

Molecular tools for the detection, differentiation, and genetic
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characterization of Fasciola spp. have been reviewed recently
(379). Molecular approaches based on ITS1, ITS2, nad1, and cox1
have been used mainly for the differentiation of adult flukes of F.
hepatica, F. gigantica, and the novel “intermediate Fasciola” (i.e.,
hybrid form between F. hepatica and F. gigantica) and to detect

genetic variation among Fasciola spp. The assays have not yet
been fully validated in population-based studies or for patient
diagnosis. DNA-based methods are not widely used for the diag-
nosis of paragonimiasis in human cases; PCR and PCR followed
by (pyro)sequencing, usually targeting the ITS2 sequence, are

TABLE 8 PCR-based assays for detection and molecular characterization of food-borne trematodesc

Species Amplification method Detection method(s) Target Sample type(s) Reference

O. viverrini PCR Gel electrophoresis O. viverrini-specific repetitive
DNA fragment

Stool 491

O. viverrini PCRa Gel electrophoresis O. viverrini-specific repetitive
DNA fragment

Stool 492

O. viverrini, C. sinensis Multiplex PCR Gel electrophoresis Mitochondrial DNA Worms, metacercariae,
eggs

493

Opisthorchiidae PCR Gel electrophoresis ITS2 Stool 494
O. viverrini PCRa Gel electrophoresis O. viverrini-specific repetitive

DNA fragment
Stool 495

O. viverrini Real-time PCR Hydrolysis probe O. viverrini-specific repetitive
DNA fragment

Tumor tissue 368

O. viverrini PCR Gel electrophoresis O. viverrini genomic DNA
clone

Stool 496

O. viverrini, C. sinensis,
Haplorchis taichui

PCR-RFLP Gel electrophoresis ITS2 Stool 497

O. viverrini, H. taichui Nested PCR Gel electrophoresis cox1 Stool 498
C. sinensis, O. felineus, O.

viverrini
Real-time PCR Hydrolysis probe ITS2 Stool 369

O. viverrini Real-time PCR FRET probes-MCA O. viverrini-specific repetitive
DNA fragment

Stool 499

O. viverrini, H. taichui PCR Gel electrophoresis ITS1 Stool 489
O. viverrini, H. taichui PCR Gel electrophoresis ITS2 Stool
C. sinensis, O. viverrini, O.

felineus
MLPA Gel electrophoresis,

capillary
sequencer

ITS1 Worm 372

O. viverrini (and S.
stercoralis)

Real-time multiplex PCRb FRET probes-MCA O. viverrini-specific repetitive
DNA fragment

Stool 356

O. viverrini, H. taichui HAT-RAPD PCR Gel electrophoresis Genomic Microscopy-positive
stool

500

O. viverrini LAMP Visual nad1 Stool, fish 374
O. viverrini LAMP Real time, visual ITS1 Stool 373
O. viverrini, C. sinensis Real-time multiplex PCRb FRET probes-MCA nad2 Stool 371
C. sinensis Real-time PCR Hydrolysis probe ITS1 Stool, fish 370
F. hepatica, F. gigantica,

intermediate Fasciola
Sequence-related amplified

polymorphism
Gel electrophoresis Random nucleotide sequence Worms 501

F. hepatica, F. gigantica PCR-RFLP Gel electrophoresis SSU rDNA Worms 502
F. hepatica, F. gigantica,

intermediate Fasciola
PCR-RFLP Gel electrophoresis ITS2 Worms 503

F. hepatica, F. gigantica,
intermediate Fasciola

PCR Gel electrophoresis ITS2 Worms 504

F. hepatica, F. gigantica LAMP Visual IGS Worms, cercariae, eggs 505
F. hepatica, F. gigantica Multiplex PCR Gel electrophoresis Mitochondrial DNA Worms, miracidia,

eggs, stools
506

Paragonimus PCR sequencing Sequence ITS2 Eggs 507
P. westermani LAMP Visual ITS2 Sputum, pleural fluid,

crabs, crayfish
380

P. westermani, Fasciolopsis
buski, F. gigantica

PCR Gel electrophoresis ITS2 Worms 508

Paragonimus heterotremus,
P. westermani, P.
macrorchis, P. siamensis,
P. harinasutai, and P.
bangkokensis

Real-time PCR FRET probes and
MCA

ITS2 Feces of experimentally
infected cats

509

Paragonimus bangkokensis,
P. harinasutai, P.
heterotremus, P.
macrorchis, P. siamensis,
P. westermani

PCR pyrosequencing Sequence ITS2 Metacercariae 510

a PCR primers are described in reference 491.
b PCR primers are described in reference 499.
c Abbreviations: RFLP, restriction fragment length polymorphism; MCA, melt curve analysis; HRM, high-resolution melt curve analysis; SSU, small subunit; ITS, internal
transcribed spacer; HSP, heat shock protein; IGS, intergenic spacer region; cox1, mitochondrial cytochrome c oxidase subunit I gene; nad1, NADH dehydrogenase subunit 1; nad2,
NADH dehydrogenase subunit 2; MLPA, multiple ligation-dependent probe amplification; HAT-RAPD, high-annealing-temperature random amplified polymorphic DNA; LAMP,
loop-mediated isothermal amplification; FRET, fluorescence resonance energy transfer.
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used primarily for the detection and identification of Paragonimus
species from metacercariae, crabs, and experimentally infected
animals or for confirmation of eggs found in sputum or stool
samples (Table 8). A LAMP assay using primers targeting the ITS2
sequence detected Paragonimus westermani-specific DNA in 17
microscopy-positive pleura and sputum samples, and no P.
westermani-specific DNA was detected in the negative-control
sputum samples (380).

Recent outbreaks of opisthorchiasis after eating raw fillets of
tench (Tinca tinca) in Italy, with cases found in Italy, Austria, and
The Netherlands (381), are only one example that urges the need
for specific and sensitive diagnostic tools in a clinical diagnostic
setting. In such cases, usually only very small numbers of the very
small eggs are present, which makes molecular diagnostic tools
such as real-time PCR a very appealing and worthwhile approach
to confirm the clinical diagnosis.

SCHISTOSOMA

Although adult schistosome worms reside, depending on the spe-
cies, in the blood vessels around the intestine or urinary bladder
and are therefore strictly blood parasites, the eggs of Schistosoma
mansoni are excreted in feces through the intestinal wall, and the
eggs of Schistosoma haematobium pass through the bladder wall
into the urine. The number of eggs, especially for travelers, is often
very small, and therefore, large quantities of feces and/or urine are
concentrated to improve the sensitivity of microscopic examina-
tion. Due to the often very light infections in settings where the
disease is not endemic, serology is much more sensitive than mi-
croscopy for the diagnosis of schistosomiasis in travelers (382).
Recent studies have shown that the detection of Schistosoma-spe-
cific DNA can achieve a higher sensitivity for the diagnosis of acute
schistosomiasis than serology (383, 384).

The S. mansoni and S. haematobium tandem-repeat sequences
described by Hamburger et al. (385, 386) have been used in a large
number of studies using conventional and real-time PCR for the
detection of Schistosoma-specific DNA in stool, urine, and serum
samples as well as the SSU rDNA, 28S, and ITS sequences and
mitochondrial genes (Table 9). In areas of endemicity, Schistoso-
ma-specific PCR performed on DNA isolated from a small
amount of urine or feces has been shown to be more sensitive than
microscopic examination (387). In an area of low endemicity in
Brazil (n � 149), the detection rate of a conventional PCR de-
signed from the S. mansoni 121-bp tandem-repeat sequence and
performed on DNA isolated from one stool sample (38.1%) was
higher than the detection rate found after microscopic examina-
tion of Kato-Katz thick smears of three stool samples (30.9%)
(388). Although the sensitivity of a genus-specific real-time PCR
targeting the Schistosoma ITS2 sequence using DNA isolated from
200 	l of urine from schoolchildren in Ghana with �50 eggs/10
ml was only 85.2%, the overall detection rate found for PCR was
20.8%, compared to 15.4% for microscopy with 10 ml urine. The
higher sensitivity of the real-time PCR resulted in much higher
negative predictive values than for microscopy (389). A higher
sensitivity of PCR in samples with low egg counts might be
achieved by the use of larger volumes of urine samples and filter-
based DNA isolation methods (390–393). Latent class analysis of
hematuria, microscopy, and PCR targeting the S. haematobium-
specific DraI repeat sequence using DNA isolated from one-quar-
ter of a filter paper after filtration of 50 ml of urine showed sensi-
tivities of 87%, 70%, and 100%, respectively (392). ten Hove et al.

performed a multiplex real-time PCR targeting the cox1 genes of S.
mansoni and S. haematobium on a selection of duplicate stool
samples from 88 subjects in northern Senegal. S. mansoni-specific
DNA and S. haematobium-specific DNA were amplified, and
DNA loads showed a significant correlation with microscopic egg
counts for S. mansoni in stool and S. haematobium in urine; how-
ever, the sensitivity of PCR was slightly lower than that of micros-
copy (394). Real-time PCR targeting the Schistosoma ITS2 se-
quence performed on vaginal lavage samples proved to be a
promising tool in the notoriously difficult diagnosis of genital
schistosomiasis (395, 396). S. haematobium DNA in vaginal lavage
samples was highly associated with genital mucosal manifesta-
tions typical of female genital schistosomiasis (395).

Recently, there has been increased interest in the detection of
Schistosoma DNA in serum samples for the (early) diagnosis of
schistosomiasis. Already in 2002, amplification of the S. mansoni
tandem-repeat sequence using conventional PCR was shown in
sera from two schistosomiasis patients (387). High sensitivities for
the detection of Schistosoma DNA using a real-time PCR targeting
the S. mansoni tandem-repeat sequence have been reported, using
DNA isolated from 10 ml plasma from patients with chronic dis-
ease infected with S. mansoni, S. haematobium, and S. japonicum
and from patients with Katayama syndrome. Amplification of the
S. mansoni tandem-repeat sequence was shown up to 58 weeks
after treatment (397). In a cluster of travelers (n � 13) from
Rwanda, all presenting with acute schistosomiasis, the same PCR
approach using 2 ml of serum detected Schistosoma DNA in all 13
serum samples, whereas eggs of S. mansoni were found in 9 stool
samples, and antischistosome antibodies were detected in 10 pa-
tients (383). In a multicenter study, the Schistosoma tandem-re-
peat sequence was amplified in 35 of 38 patients (92%) with acute
schistosomiasis, compared to sensitivities of 70% and 24% using
serology and microscopy, respectively (384). However, for pa-
tients (n � 140) who presented at an outpatient clinic in Antwerp,
Belgium, using a real-time PCR developed to target the 28S rDNA
sequence, Schistosoma-specific DNA was detected in all microsco-
py-positive stool (n � 67) and urine (n � 4) samples and addi-
tionally in microscopy-negative stool (n � 9) and urine (n � 1)
samples, whereas the Schistosoma 28S target was amplified in only
2 of 38 serum samples of patients with confirmed schistosomiasis
(398).

CESTODES

The impressive length of tapeworms has made them among the
most well-known and evocative parasites to the general public.
Although the pathology of intestinal cestodes is usually minor, if
metacestode stages occur in human tissues, pathology and mor-
bidity can be severe. Several species are known to infect humans,
with Taenia solium (pork tapeworm), which can cause neurocys-
ticercosis when metacestode stages develop in the brain after in-
fection with eggs; Taenia saginata (beef tapeworm); Hymenolepis
nana (dwarf tapeworm); and Diphyllobothrium latum (broad or
fish tapeworm) being the most common (399).

Frequently, the diagnosis has already been made when patients
notice the presence of proglottids in their feces. Parasitological
differentiation based on morphological criteria might be difficult
due to degeneration or the juvenile stage of the proglottids found.
Microscopic detection of eggs in feces from patients with Taenia
infections is known to be insensitive, as eggs expelled from pro-
glottids are not equally distributed in the feces. Immunodiagnos-
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tic tests for the detection of Taenia antigens in stool samples have
been used mainly in epidemiological studies, and DNA-based
methods are used mainly for species discrimination (Table 10)
(400, 401). Primarily, conventional (multiplex) PCR and PCR-
RFLP designed based on the HDP1 repeat, HDP2, mitochondrial
12S rDNA, cox1, the pTsol9 repeat, and the Tso31 sequence have
been used for species discrimination using DNA isolated from
proglottids and have been tested only on small numbers of usually
known positive and negative stool samples (Table 10). Recently,
Bayesian modeling was used to estimate and compare the perfor-
mances of microscopy, coproantigen ELISA, and multiplex real-
time PCR for the detection of Taenia carriers by using stool sam-
ples (n � 871) collected in two Zambian communities where the
disease is endemic. Specificities were 99.9%, 92.0%, and 99.0%

and sensitivities were 82.5%, 84.5%, and 82.7% for microscopy,
ELISA, and PCR, respectively (402). In a study comparing LAMP
and a conventional multiplex PCR based on the cox1 sequence
using 43 known positive fecal samples, LAMP was more sensitive
than PCR, 88.4% and 37.2%, respectively (403).

Molecular diagnostics have proven to be extremely valuable in
the diagnosis of neurocysticercosis (404–406). In a group of 121
patients with confirmed neurocysticercosis, PCR targeting the
pTsol9 repetitive element performed on DNA isolated from CSF
samples showed the highest sensitivity (95.9%) compared to
antibody detection by ELISA or immunoblotting and HP10 anti-
gen detection by ELISA, with sensitivities of 90.1%, 53.7%, and
81%, respectively (405).

Species-specific PCRs for non-Taenia tapeworm species

TABLE 9 PCR-based assays for detection and molecular characterization of Schistosoma infectionsf

Species Amplification method Detection method Target(s) Sample type(s) Reference

S. mansoni PCR Gel electrophoresis S. mansoni tandem repeat Adult worm 385
S. haematobium PCR Gel electrophoresis S. haematobium tandem repeat Adult worm 386
S. mansoni PCR Gel electrophoresis S. mansoni tandem repeat Stool, serum 387
S. mansoni PCRa Gel electrophoresis S. mansoni tandem repeat Stool 388
S. mansoni PCR Gel electrophoresis Mitochondrial DNA Stool 511
S. japonicum PCR Gel electrophoresis Mitochondrial DNA Stool 511
Schistosoma genus PCR Gel electrophoresis 28S Urine 512
S. mansoni PCR Gel electrophoresis 28S Urine 512
S. japonicum PCR Gel electrophoresis 28S Urine 512
S. haematobium, S. bovis,

S. intercalatum
PCR Gel electrophoresis ITS Urine 512

S. mansoni Real-time PCR SYBR green SSU rDNA 513
S. japonicum Real-time PCR SYBR green nad1 Stool 514
S. mansoni Multiplex real-time PCR Hydrolysis probe cox1 Stool 394
S. haematobium Multiplex real-time PCR Hydrolysis probe cox1 Stool 394
Schistosoma genus Real-time PCR Hydrolysis probe ITS2 Urine 458
S. japonicum Real-time PCR Hydrolysis probe nad1 Stool 515
S. mansoni PCRa Gel electrophoresis S. mansoni tandem repeat Stool 516
Schistosoma genus Real-time PCR Hydrolysis probe S. mansoni tandem repeat Plasma 397
Schistosoma genus Real-time PCRc Hydrolysis probe ITS2 Vaginal lavage 395
S. japonicum LAMP Visual Retrotransposon SjR2 repeat Serum 517
S. mansoni PCRa Gel electrophoresis S. mansoni tandem repeat Stool 518
Schistosoma genus PCR-ELISAa ELISA S. mansoni tandem repeat Stool 519
S. mansoni PCRa,b Gel electrophoresis S. mansoni tandem repeat and 28S Stool 520
S. haematobium PCRe Gel electrophoresis S. haematobium tandem repeat Cerebrospinal fluid 521
Schistosoma genus Real-time PCRd Hydrolysis probe S. mansoni tandem repeat Serum 383
S. haematobium PCRe Gel electrophoresis S. haematobium tandem repeat Urine 391
S. haematobium PCRe Gel electrophoresis S. haematobium tandem repeat Urine 392
S. japonicum Nested PCR Gel electrophoresis S. japonicum repeat sequence Serum 522
S. mansoni PCRa Gel electrophoresis S. mansoni tandem repeat Urine 523
S. japonicum PCR Gel electrophoresis Retrotransposon SjR2 repeat Stool 524
S. mansoni PCRa Gel electrophoresis S. mansoni tandem repeat Stool 525
S. mansoni Nested PCRa Gel electrophoresis S. mansoni tandem repeat Spiked stool 526
S. haematobium PCR Gel electrophoresis nad1 and cox1 Urine 393
Schistosoma genus Real-time PCR Hydrolysis probe 28S Stool, urine, serum 398
Schistosoma genus Real-time PCRd Hydrolysis probe S. mansoni tandem repeat Plasma 384
Schistosoma genus Real-time PCRc Hydrolysis probe ITS2 Urine 389
S. mansoni PCRa Gel electrophoresis S. mansoni tandem repeat Urine 527
Schistosoma genus Real-time PCRc Hydrolysis probe ITS2 Urine, vaginal lavage 396
a PCR primers are described in reference 387.
b PCR primers are described in reference 512.
c PCR primers and probe are described in reference 458.
d PCR primers and probe are described in reference 397.
e PCR primers are described in reference 386.
f Abbreviations: RFLP, restriction fragment length polymorphism; SSU, small subunit; ITS, internal transcribed spacer; cox1, mitochondrial cytochrome c oxidase subunit I gene;
nad1, NADH dehydrogenase subunit 1.
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have not been widely used. A multiplex PCR targeting the cox1
sequence with a general reverse primer and four species-spe-
cific forward primers was used for the specific amplification of
Diphyllobothrium latum, D. dendriticum, D. pacificum, and D.
nihonkaiense DNAs from adult worms, plerocercoid larvae,
and eggs (407).

PCR followed by sequencing using universal primers to am-
plify the ribosomal ITS1, ITS2, 5.8S, and SSU rDNA sequences or
mitochondrial genes is used to identify and confirm the species
identity of tapeworms found in individual cases as well as inter-
species variation to construct phylogenetic relationships (408–
411). Sequence analysis of the ITS1, cox1, and paramyosin gene
sequences from H. nana isolates from northwest Australia pro-
vided genetic support that the life cycle involves mainly human-
to-human transmission (412).

CONCLUDING REMARKS

A large number of studies using a variety of nucleic acid-based
techniques have contributed to our understanding of the genetic

diversity, epidemiology, and clinical relevance of intestinal para-
sites. For obvious reasons, in a routine setting, standardization
and harmonization of protocols are essential for cost-effective im-
plementation of these new techniques. A syndrome-driven ap-
proach that includes the detection of the most likely pathogens in
a particular setting using a single overall technique can be facili-
tated by the use of multiplex real-time PCR. Such an approach
offers a highly sensitive and specific diagnostic alternative to la-
bor-intensive microscopy in clinical laboratory practice for the
diagnosis of intestinal pathogens. As molecular diagnostic facili-
ties in general microbiology laboratories are already widely avail-
able, an increasing number of laboratories have implemented
real-time PCR for the first-line diagnosis of intestinal parasitic
infections. The implementation of nucleic acid-based tests is par-
ticularly useful for diarrhea-causing protists when used in combi-
nation with additional panels for the detection of bacterial and
viral enteritis agents (106, 413). In comparison with microscopic
examination, the rate of detection of parasitic infections when the
targets are included in a multiplex PCR is considerably high (27,

TABLE 10 PCR-based assays for detection and molecular characterization of cestode infectionsg

Genus or species Amplification method Detection method Target(s)
Sample type(s)
(no. of samples) Reference(s)

Diphyllobothrium genus Multiplex PCR Gel electrophoresis cox1 Proglottids, eggs 407
T. saginata PCR Gel electrophoresis HDP1 Proglottids 528, 529
T. solium, T. saginata Multiplex PCR Gel electrophoresis HDP2 Proglottids
T. solium, T. saginata Multiplex PCR-RFLPe Gel electrophoresis HDP2 Proglottids 530
T. solium, T. saginata, T. asiatica PCR-RFLP Gel electrophoresis Mitochondrial 12S rDNA Proglottids 531
T. solium, T. saginata Multiplex PCRe Gel electrophoresis HDP2 Stool 532
T. solium, T. saginata, T. asiatica Multiplex PCR Gel electrophoresis cox1 Proglottids, stool (6) 533
T. saginata, T. asiatica Multiplex PCR-RFLP Gel electrophoresis HDP2 Proglottids 534
T. solium, T. saginata, T. asiatica Multiplex PCRa Gel electrophoresis cox1 Proglottids, stool (25) 535
T. solium, T. saginata PCR-RFLP Gel electrophoresis cox1 Stool (12) 536
T. solium PCR Gel electrophoresis Tsol9 repeat sequence Cerebrospinal fluid 404
T. solium, T. saginata, T. asiatica PCR-RFLPb Gel electrophoresis Mitochondrial 12S rDNA Proglottids 537, 538
T. solium, T. saginata, T. asiatica Multiplex PCRa Gel electrophoresis cox1 Proglottids, stool (19) 539
T. solium, T. saginata, T. asiatica Multiplex PCRa Gel electrophoresis cox1 Proglottids 540
T. solium, T. saginata, T. asiatica Multiplex PCRa Gel electrophoresis cox1 Proglottids 541
T. solium Nested PCR Gel electrophoresis Tsol31 Stool (155) 542
T. solium Nested PCR Gel electrophoresis HDP2 Cerebrospinal fluid 543
Taenia genus PCR Sequencing ITS1 Cerebrospinal fluid 425
T. solium, T. saginata, T. asiatica Multiplex PCR Gel electrophoresis cox1 Proglottids 544
T. solium, T. saginata, T. asiatica LAMP Gel electrophoresis Clp, cox1 Proglottids, cysticerci,

stool (6)
545

T. solium, T. saginata, T. asiatica LAMPf Gel electrophoresis Clp, cox1 Stool (43) 403
T. solium, T. saginata, T. asiatica PCR Gel electrophoresis HDP2 Proglottids 546
T. solium, T. saginata, T. asiatica Multiplex PCRa Gel electrophoresis cox1 Proglottids 547
T. solium PCRd Gel electrophoresis Tsol9 repeat sequence Cerebrospinal fluid 405
T. solium Real-time PCR LNA hydrolysis probe Tsol9 repeat sequence Cerebrospinal fluid 406
T. solium, T. saginata, T. asiatica Multiplex PCRc Gel electrophoresis cox1 Proglottids, eggs 548
T. solium, T. saginata, T. asiatica PCR-RFLPb Gel electrophoresis Mitochondrial 12S rDNA Proglottids 537
T. solium, T. saginata, T. asiatica PCR-RFLPb Gel electrophoresis Mitochondrial 12S rDNA Proglottids 549
T. solium, T. saginata, T. asiatica Multiplex PCRc Gel electrophoresis cox1 Proglottids 550
T. solium, T. saginata Real-time multiplex PCR Hydrolysis probe ITS1 Stool (817) 402
a PCR primers are described in reference 533.
b PCR primers are described in reference 531.
c PCR primers are described in reference 544.
d PCR primers are described in reference 404.
e PCR primers are described in references 528 and 529.
f LAMP primers were described previously (545).
g Abbreviations: RFLP, restriction fragment length polymorphism; LNA, locked nucleic acid; SSU, small subunit; ITS, internal transcribed spacer; cox1, mitochondrial cytochrome c
oxidase subunit I gene; Clp, cathepsin L-like cysteine peptidase; HDP1, T. saginata-specific repetitive sequence; HDP2, cestode-specific sequence.
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87, 104, 107, 162, 414). However, parasites that are not included as
targets in the multiplex PCR will not be detected, which is one of
the arguments that is frequently raised against the use of molecu-
lar diagnostics in parasitology. Although true, it is good to realize
that, diarrhea-causing protists aside, the prevalence of other par-
asitic pathogens detected by microscopy of stool samples submit-
ted to most general microbiology laboratories in industrialized
countries is extremely low (27, 162, 328, 413, 415–418). Even in
travelers, additional parasites are found by microscopy in only a
small minority of cases, with the highest detection rates in travel-
ers to high-risk areas (107, 419). The use of additional diagnostic
methods for the detection of those parasitic infections that are not
included in a standard fecal PCR panel may therefore be limited to
a select group of patients. For some laboratories, this would prob-
ably mean that there are only a few cases in which additional tests
are needed, whereas, for example, in laboratories located in large
metropolitan areas with large immigrant populations and serving
many travelers, it would be more efficient to employ a more elab-
orate PCR panel and/or to perform additional microscopy on all
samples submitted. This approach is similar to algorithms that are
used where PCR is not a method of choice for the routine diagnosis of
parasitic infections. Decisions on a standard screening technique to
employ are based on the general patient population profile of the
laboratory, including travel (immigration and adoption), immune
status, eosinophilia, larva currens, persistent symptoms, and so on,
with or without additional techniques for the diagnosis of other in-
fections (27, 417, 420). For example, in immunocompromised pa-
tients with diarrhea, an additional method for the detection of oppor-
tunistic pathogens such as microsporidia and C. belli may be
appropriate. This could be performed by optical white staining and
acid-fast staining, respectively, or by using a multiplex PCR for the
detection of both pathogens.

Molecular techniques are ideally suited for automation, and
following the rapid growth of nucleic acid-based techniques for a
large variety of targets, automation of the diagnostic process is
currently being implemented in many laboratories. Automation
of nucleic acid isolation, PCR setup, and PCR, when integrated
through middleware with a laboratory information management sys-
tem (LIMS), facilitates a rapid sample-to-answer process. This could
be seen by some as another step in the separation of the laboratory,
the clinician, and the individual patient. However, in this process,
primary screening through a general algorithm can be followed by
additional techniques decided upon during medical authorization
based on individual clinical records and patient history.

Obviously, just as quality assessment schemes are common
practice for microscopy-based diagnosis, the application of mo-
lecular diagnostics requires quality assurance as well. Initiatives to
this end have been taken (421). Since 2012, Quality Control for
Molecular Diagnostics (QCMD) (http://www.qcmd.org/) pro-
vides a yearly quality assessment scheme for gastrointestinal dis-
eases, including a panel for intestinal protozoa. The Dutch Foun-
dation for Quality Assessment in Medical Laboratories (SKML)
(http://www.skml.nl/) has started an international scheme for
molecular diagnosis of intestinal protozoa as well.

FUTURE DIRECTIONS

Throughout the world, including developing countries, real-time
PCR is available in an increasing number of research centers, and
molecular diagnosis of parasitic infections can be applied to large-
scale epidemiological and more fundamental research. One major

advantage is the possibility of an integrated high-throughput ap-
proach for the detection of a range of parasitic, bacterial, and viral
targets using the same technique and for which samples can be
collected and transported to central laboratories. Moreover, samples
can be stored and used later for testing of additional targets when new
research questions arise or, for example, for detection of mutations
that are associated with drug resistance. Although, at first glance, PCR
is more expensive than conventional microscopy-based techniques,
this must be weighed against the complexities of organizing the pro-
longed stay of a large team of technicians and support staff in the field,
sometimes under primitive conditions.

In a number of European countries, (automated) multiplex
PCRs, which are usually in-house tests, are routinely used in clin-
ical diagnostic laboratories. Commercial multiplex PCRs for the
detection of a range of enteropathogens, which are already opti-
mized and validated for a variety of instruments, as well as kits to
be used on more extended multiplex platforms, such as Luminex,
and variations on microarrays are all available (413, 422–424).
This trend will make it easier for laboratories that are just starting
to use molecular diagnostics to catch up with the rapid develop-
ments in this field. The first FDA-approved multiplex gastroen-
teric panel will lead to the more widespread use of nucleic acid-
based tests in the United States as well (Table 2). Test formats that
combine sample processing and DNA amplification of entero-
pathogens for single or multiple samples into one device have
recently been launched or are still under development (e.g.,
BDmax [Becton, Dickinson and Company] and FilmArray [Bio-
fire Diagnostics]) and will make it feasible for smaller laboratories
to implement nucleic acid-based diagnostics. The cost-effective-
ness of such an approach compared to in-house or commercially
available high-throughput platforms, however, needs to be inves-
tigated. Another interesting approach is the use of an extended-
range PCR screening strategy for the detection of bacterial, viral,
fungal, and parasitic organisms in complex cases with a broad
differential diagnosis; this has been reported in a case of
cystoisosporiasis and in a case of neurocysticercosis (211, 425).

While there is no doubt that molecular diagnostic methods will
continue to rely on the detection of genus- or species-specific
DNA or RNA, new-generation sequencing platforms, which as yet
are used primarily for research, will become more user-friendly and
will be applied in a diagnostic setting. This will enable, for example,
screening of fecal DNAs using broad-specificity primers for in-depth
analysis of the microbially diverse populations present in such sam-
ples (426). In addition to targeting microorganisms, the host factors
potentially involved in pathogenesis can also be explored.
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